19. SEPTEMBER 2018

9:00	Begrüßung und Einleitung Michael Eyll-Vetter, RWE Power, Leiter Sparte Tagebauentwicklung	12:15	Mittagessen
	Grußwort Volker Mießeler, Bürgermeister der Stadt Bergheim	13:30	Identifikation von kritischen Bodenparametern für die Risikoabschätzung von Bodensenkungen durch mikrobiellen Abbau von organischen Substanzen Prof. Dr. Sylvia Schnell, Justus-Liebig-Universität Gießen
9:20	Bericht der Schlichtungsstelle Marcus Temburg, Leiter Planungsamt Rhein-Kreis Neuss		
		14:00	Experimentelle Untersuchungen zum Verformungsverhalten von Torfen
9:50	Bergschadensbearbeitung aus der Sicht einer Kommune Georg Gelhausen, Bürgermeister Gemeinde Merzenich		Prof. Dr. Richard A. Herrmann, Universität Siegen
40.00	Cabliabium mayarfabran aya Ciabi dan Daimaffanan	14:30	Kaffeepause
10:20	Schlichtungsverfahren aus Sicht der Betroffenen Ulrich Behrens, Landesverband der Bergbaubetroffenen NRW		
		15:00	Das Schwindverhalten bindiger Böden und seine bautechnische Bedeutung – Neue Erkenntnisse
10:50	Pause		Prof. Dr. Dietmar Placzek, Erdbaulaboratorium Essen
11:15	Bodenbewegungskataster NRW – wie Satelliten Bewegungen künftig dokumentieren können Dr. Jens Riecken, Bezirksregierung Köln, Geobasis NRW	15:30	Modellierung sümpfungsbedingter Bodenbewegungen im Rheinischen Braunkohlenrevier Dr. Benjamin Aulbach, ZAI Ingenieure
11:45	Bodenbewegungsverhalten an sümpfungsbeeinflussten Störungen im Rheinischen Revier bei Grundwasser- Wiederanstieg Prof. Dr. Axel Preuße, RWTH Aachen	16:00	Abschluss und Ende der Veranstaltung

Bergschadensforum im MEDIO-RHEIN-ERFT, Konrad-Adenauer-Platz 1, in 50126 Bergheim

I. Statistische Auswertung Gesamtübersicht 2010 bis 2018

Gesamt	Positiv abgeschlossene Verfahren	Negativ Abgeschlossene Verfahren	Zurückgezogene Anträge	Offene Verfahren
213	81	57	41	34

Gesamtübersicht

Jahr	Gesamt	Abgeschlossen Positiv	Abgeschlossen Negativ	Offene Verfahren	Aufgelaufene Zahlungen
2010	6	4	2	0	74.500€
2011	43	19	19	5	620.237€
2012	38	20	17	1	114.111€
2013	53	20	31	2	165.650€
2014	19	3	12	4	29.250€
2015	8	3	3	2	2.500€
2016	16	4	9	3	21.400€
2017	21	8	4	9	19.510€
2018	9	-	1	8	0€
Gesamt	213	81	98	34	1.047.158€

Verfahrensabschlüsse im Jahr 2016

2016 wurden 25 Verfahren abgeschlossen, und zwar

- 5 Verfahren aus 2011
- 6 Verfahren aus 2012
- 2 Verfahren aus 2013
- > 3 Verfahren aus 2014
- 4 Verfahren aus 2015
- > 5 Verfahren aus 2016

25 Verfahren insgesamt

Verfahrensabschlüsse im Jahr 2017

2017 wurden 22 Verfahren abgeschlossen, und zwar

- > 1 Verfahren aus 2011
- > 1 Verfahren aus 2012
- 5 Verfahren aus 2013
- > 1 Verfahren aus 2014
- 2 Verfahren aus 2015
- > 7 Verfahren aus 2016
- > 5 Verfahren aus 2017

22 Verfahren insgesamt

Verfahrensabschlüsse im Jahr 2018


2018 wurden 11 Verfahren abgeschlossen, und zwar

- > 1 Verfahren aus 2014
- 1 Verfahren aus 2016
- > 8 Verfahren aus 2017
- > 1 Verfahren aus 2018

11 Verfahren insgesamt

Schlichtungsstelle Braunkohle NRW Gesamtübersicht 2010 bis 2018 213 Anträge gesamt - Diagramm

Ich bedanke mich für Ihre Aufmerksamkeit

Marcus Temburg

- Geschäftsstellenleiter der
- Schlichtungsstelle Braunkohle NRW
 - Schloßstraße 20
 - 41515 Grevenbroich

GEMEINDE MERZENICH

Bergschadenssituation aus Sicht der Gemeinde Merzenich

5. Bergschadensforum am 19. September 2018

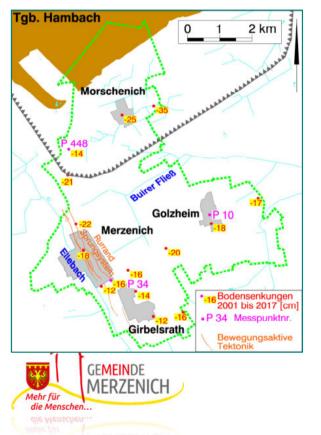
Schon lange Zeit ein Thema in unserer Gemeinde (Beispiele)

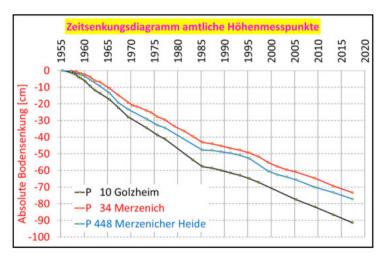
Haus Dienslage

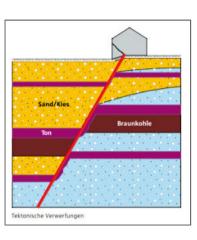
Valdersweg

Römerhof

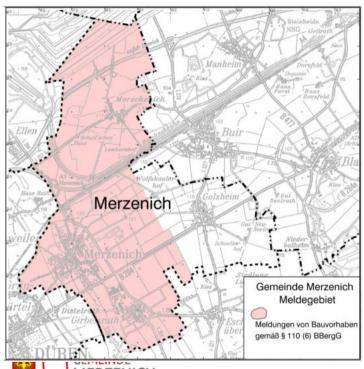
Poolplatz


Agenda


- Bodensenkungen 2001 bis 2017
- Bodenbewegungen
- Statistik
- Vorsorge durch Beteiligung
- Planungsvorhaben
- Bergschadenssituation Gebäude
- Bergschadenssituation Straßen und Kanäle
- Aus der Not eine Tugend machen!
- Was kann die Kommune weiter tun?
- Was läuft gut? Was kann verbessert werden?



Bodensenkungen 2001 bis 2017


Die Bodenbewegungen werden durch turnusmäßige Höhenmessungen an einer Vielzahl von Messpunkten dokumentiert (insgesamt rund **4.900 Messpunkte** in der Gemeinde Merzenich).

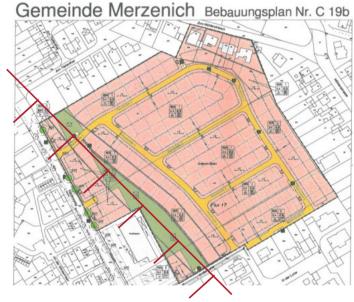
Statistik

Gebäude	2013	2014	2015	2016	2017
Erstmeldungen	14	7	7	15	13
Neue Bergschäden	5	3	1	5	2
Wiederholungsmeldungen	63	47	56	52	46
Schlichtungsfälle	1	0	0	0	0

Vorsorge durch Beteiligung

- Regelmäßige Meldung von Planungs- und Bauvorhaben an RWE Power zur Prüfung, ob bergbauliche Belange (Tagebaubetrieb, Vorfeld, Umsiedlung, Bergschäden, etc.) zu berücksichtigen sind.
- In den letzten Jahren wurden durchschnittlich:
 - 40-50 Anfragen zu Bauvorhaben und Grundstücken sowie
 - 2-3 Anfragen zu Flächennutzungs- und Bebauungsplänen

aus dem Gemeindegebiet Merzenich bearbeitet und von RWE Power beantwortet.


Vorsorge bei Planungsvorhaben

 Vermeidung zukünftiger Bergschäden, Betroffenheiten und Regulierungsaufwand und durch rechtzeitige Einbindung bei:

- Landes- und Umsiedlungsplanungen
- Bauleitplänen

GEMEINDE

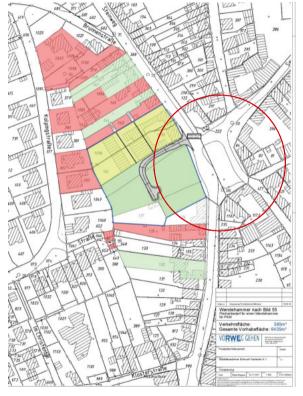
- Bauvorhaben, Grundstücksverkäufen
- Vorsorgemaßnahmen erfolgen im engen Kommunen und Bauherren:
 - Freihaltung von Störzonen in B-Plänen
 - Anpassung / Verschieben von Baukörpern
 - Entschädigung der Wertminderung bei Bergschadensverzicht und Bauverbot
 - Einbau von baulichen Sicherungsmaßnahmen
 - দ besonders gelagerten Einzelfällen Grunderwerb als ultima ratio

Bergschadenssituation Gebäude

- Die Bergschadenssituation in Merzenich ist geprägt durch Schadensmeldungen im Bereich bewegungsaktiver Tektonik.
- Die Schlichtungsstelle wurde nur in geringem Umfang von Merzenicher Bürgern in Anspruch genommen.
- Alle Grundwasser-Leiter sind bereits erfasst, sodass auch künftig keine deutlich veränderte Bergschadenssituation zu erwarten ist.
- In den Ortsteilen Morschenich, Golzheim und Girbelsrath sind keine Bergschäden zu verzeichnen.

Bergschadenssituation Straßen und Kanäle

- Im öffentlichen (Verkehrs-)Bereich wurden in Merzenich in den vergangenen fünf Jahren insgesamt 22 Bergschäden an Straßen und Kanälen durch RWE reguliert.
- Wenn möglich, werden Synergien für die Gemeinde genutzt. Beispiel: Straßen-/ Kanalsanierung in Merzenich, Bergstraße (s. Foto oben). Im Zuge der 2016 durchgeführten Maßnahme hat die Gemeinde einige Meter straßenaufwärts zum störungsbedingten Sanierungsbereich noch weitere Straßenschäden durch das von RWE beauftragte Tiefbauunternehmen sanieren lassen (s. Foto unten). Dabei sind für die Gemeinde die Kosten für die Baustelleneinrichtung und die Bauüberwachung entfallen.



Aus der Not eine Tugend machen! (Planungen Poolplatz)

- Aufgrund von bergbaubedingten Schäden mussten die Anwesen am Steinweg 1,3,5,7und 9 im Jahr 2017 zurückgebaut werden.
- Durch die Beteiligung der Anlieger kann der Bereich gegebenenfalls erweitert werden.
- Die Bedeutung des Poolplatzes für die Merzenicher Bevölkerung wurde bei der Erstellung des Dorfinnenentwicklungskonzepts deutlich.

GEMEINDE

• Es soll nun im Rahmen eines Architektenwettbewerbs eine ganzheitliche Betrachtung des Poolplatzes erfolgen und aus dem Poolplatz wieder ein ortsbildprägender und lebendiger Platz mit Aufenthaltsqualitäten entstehen.

Aus der Not eine Tugend machen! (Planungen Hofanlage Knoch)

Heute

Planung

Was kann die Kommune weiter tun?

- Die Gemeinde informiert und leistet Hilfestellung
- Mitgliedschaft im Verband bergbaugeschädigter Haus- und Grundeigentümer (VBHG) (kostenlose Vorprüfung auf Bergschäden für alle Bürger); Gemeinde sieht sich als Vermittler und Bindeglied
- Regelmäßiger Informationsaustausch mit RWE Power und VBHG in Verwaltung und politischen Gremien

Was läuft gut? Was kann verbessert werden?

- Seit 2010 Einrichtung der neutralen Schlichtungsstelle Braunkohle (ehem. Anrufungsstelle) für Betroffene
- Guter Informationsfluss zwischen Gemeinde-RWE bzw. Gemeinde-VBHG
- Fachliche Zusammenarbeit bei Bergschadensvorsorge und Schadensbeseitigung an kommunaler Infrastruktur

- Mehr Datentransparenz für Bürger (Grundwasserspiegel, Bodenbewegungen)
- Forderung zur Umkehr der Beweislast?

•

Kontaktdaten

Gemeinde Merzenich
Georg Gelhausen
Bürgermeister
Valdersweg 1
52399 Merzenich
Tel.: 02421 /399-130
ggelhausen@gemeinde-merzenich.de
www.gemeinde-merzenich.de

Schlichtung – Bergschadensbearbeitung

Bergschadensforum 2018

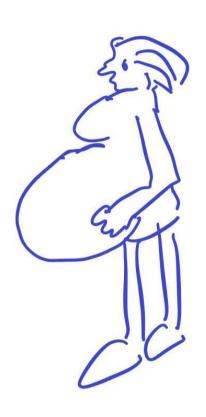
Ulrich Behrens, Geschäftsführender Vorstandssprecher

Kohlebergbau in NRW

© Dirk Jansen 19. 9. 2018

Bergschadensursachen

- Unstetigkeiten
- Humöse Böden ("Torflinsen")



Schadensursache Bergbau??

Bergschaden – ja oder nein?

Bergschaden - ja oder nein

Bergschaden oder nicht?

Rechtsmittel

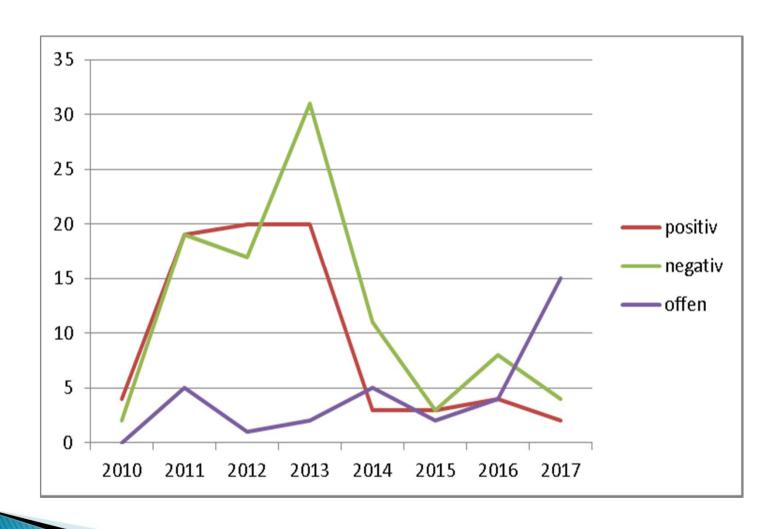
© Von Maarten van Heemskerck, Wikipedia

Schlichtungsstelle Braunkohle NRW

Schlichtungsverfahren

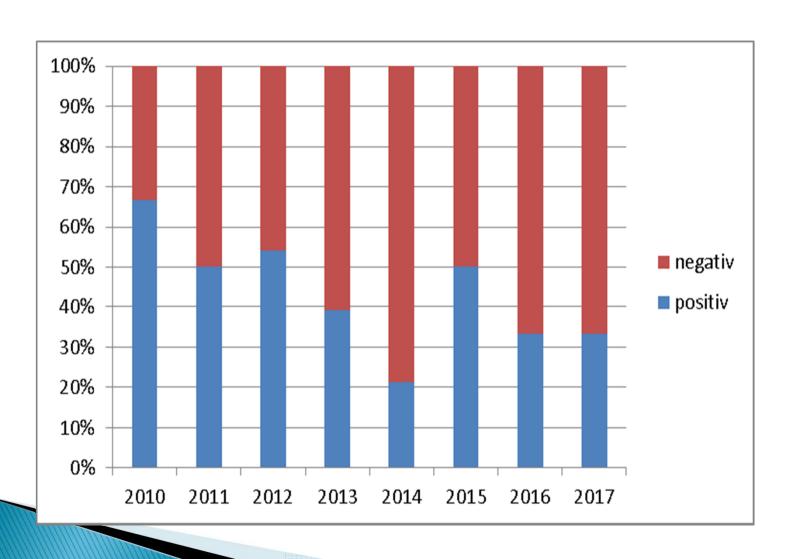
19. 9. 2018

10



Schlichtungsverfahren

	Gesamt	Abgeschlossen (+)	Abgeschlossen (-)	aufgelaufene Zahlungen
2010	6	4	2	74.500,
2011	43	19	19	620.237,€
2012	38	20	17	114.111,€
2013	53	20	31	165.650,
2014	19	3	11	29.250,€
2015	8	3	3	2.500,-€
2016	16	4	8	21.400,- €
2017	21	2	4	19.510,-€
Gesamt	204	75	95	1.047.158,€



Verfahrensdauer

Ergebnisse der Schlichtung

Ergebnisse in 2018

Abgeschlossen

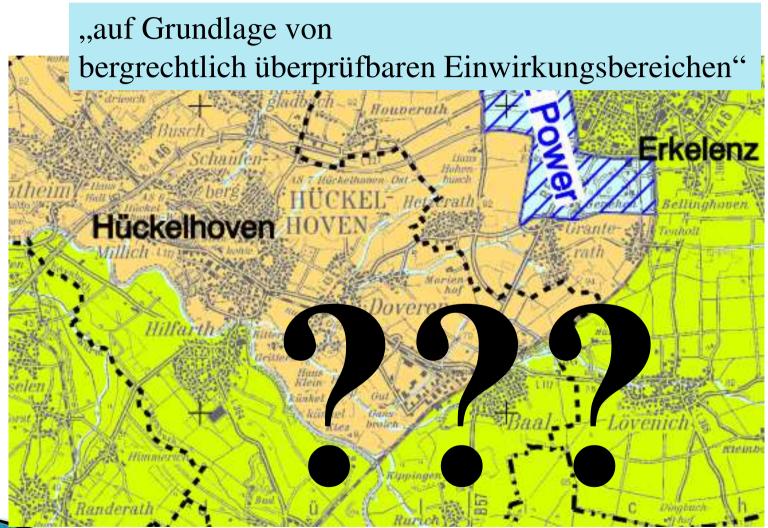
- 1 Verfahren aus 2014
- 1 Verfahren aus 2016
- 7 Verfahren aus 2017
- 1 Verfahren aus 2018

Ergebnisse

- 6 positiv u.a. mit Messbeobachtungen
- 3 negativ
- 1 Verfahren wurde keine Zustimmung seitens RWE erteilt – da keine Zuständigkeit

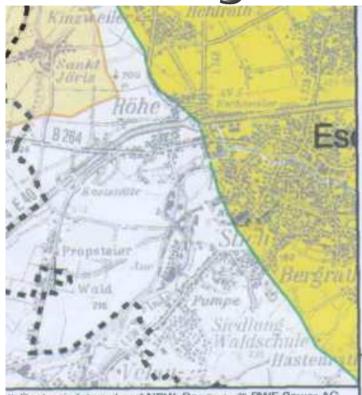
19. 9. 2018

14


Zuständigkeitskarte

- Schlichtungsordnung NRW von 2017, S. 2
 - "Die sich aus den Einwirkungsbereichen des Steinkohlenbergbaus bzw. Auswirkungs-bereichen der Sümpfungsmaßnahmen des Braunkohlenbergbaus ergebende räumliche Abgrenzung der Zuständigkeit für die jeweilige Schlichtungsstelle wird zwischen den Bergwerksunternehmen abgestimmt und der jeweiligen Schlichtungsstelle mitgeteilt."

19. 9. 2018


Zuständigkeitskarte

19. 9. 2018

Zuständigkeitskarte

© Geobasisdaten: Land NRW, Bonn + ® RWE Power AG

@ Zeichnungsinhalt: @ RWE Power AG

Diese Unterlage darf nur mit vorheriger Zustimmung der RWE Power AG an Dritte weitergegeben, verbreitet, durch Bild- oder sonstige Informationsträger wiedergegeben oder vervielfältigt werden. Sie enthillt Betriebs-/Geschäftsgeheimnisse sowie geistiges Eigentum der RWE Power AG im Sinne des UIG. Alle Nutzungs- und Verwertungsrechte liegen bei der RWE Power AG.

Lageplan zur Vereinbarung zwischen EBV GmbH und RWE Power Aktiengesellschaft

zwecks Zuständigkeit von Annulungsfällen aus Bergschäden im Gebiet gemeinsamer bergbaulicher Beeinflussung

Hückelhoven, den

EBV GmbH

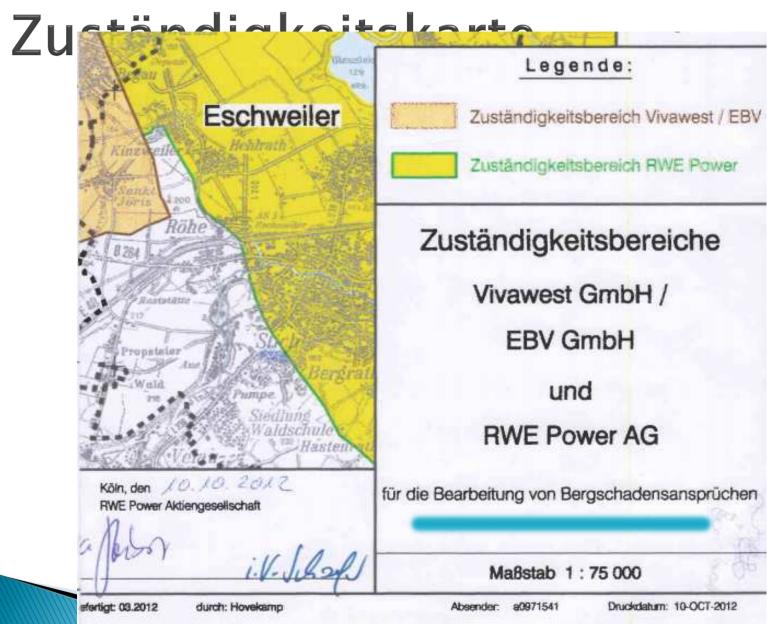
Köln, den

RWE Power Aktiengesellschaft

Zuständigkeitsbereiche EBV GmbH und RWE Power AG

Maßstab 1:75 000

ngefertigt: 8.04.2011


durch: Hovekamp

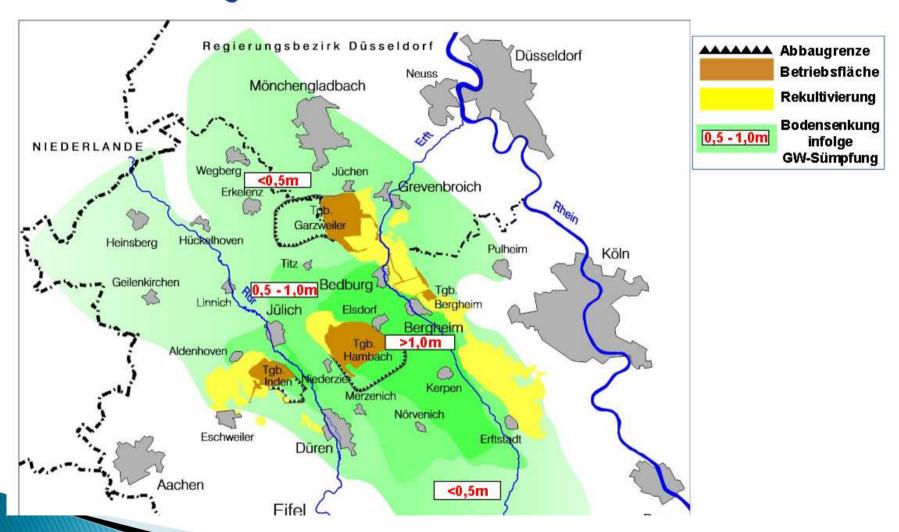
Absender: a0910755

Druckdatum: 08-APR-2011

17

19. 9. 2018

Verfahren im "Bereich EBV"



- 1. Ablehnung RWE => EBV
- 2. Verfahren RWE
- 3. Ablehnung RWE => EBV
- 4. Ablehnung RWE
- 5. Verfahren RWE
- 6. RWE und EBV teilen sich Regulierung

19. 9. 2018

Bodensenkungen 1955 bis heute

© RWE POWER, 2015

19. 9. 2018 20

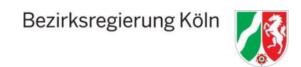
Hebungen an der Erdoberfläche

- Grundwasseranstieg (Ende der Sümpfung)
- Grubenwasseranstieg (weit über den ehemaligen Einwirkungsbereich hinaus)
 - Emil Mayrisch Schacht I -767m = >-9,19m
 - Eduard Schacht Anna -732m = > -7,74m
 - Carl Alexander Schacht II −753m =>− 8,17m

19. 9. 2018 21

Landes-Verband Berghau-Betroffener N RW

Zuständigkeit

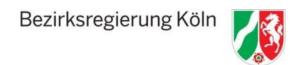

- Bergschäden
 - EBV und RWE zuständig
 - Bürgerinnen und Bürger entscheiden über Schadensmeldung selbst
- Schlichtungsstelle
 - Karte nur für Erstmeldung
 - Ablehnung durch eine Schlichtung => Meldung an andere Schlichtungsstelle möglich
 - Verfahren berücksichtigt alle Schadensursachen

19. 9. 2018 22

Vielen Dank für Ihre Aufmerksamkeit!

19. 9. 2018

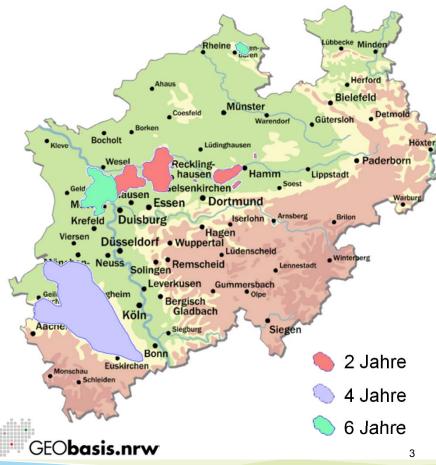
DIE REGIERUNGSPRÄSIDENTIN

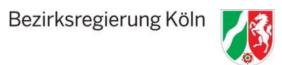

Bodenbewegungskataster NRW – wie Satelliten Bewegungen künftig dokumentieren können - ein Werkstattbericht

Dr.-Ing. Jens Riecken

gefördert durch:

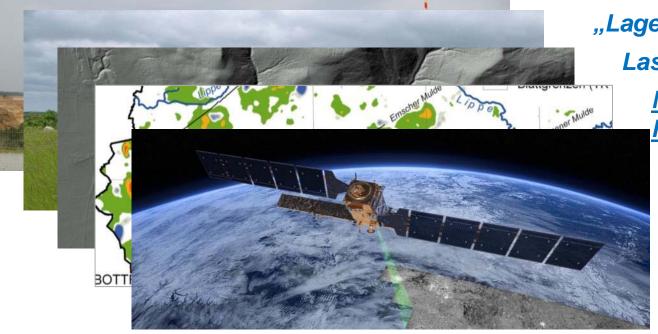
Agenda

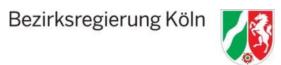

- 1. Nordrhein-Westfalen und Bodenbewegung
- 2. Beobachtungsmethoden
- 3. Bodenbewegungskataster NRW
 - 3.1 Informationsgewinnung
 - 3.2 Aufbereitung
 - 3.3 Qualitätssicherung
 - 3.4 Bereitstellung
- 4. Methodenvergleich und Ausblick


Bezirksregierung Köln

1 Nordrhein-Westfalen und Bodenbewegungen

- NRW ist durch Bodenbewegungen erheblichen Beeinträchtigungen ausgesetzt
- turnusmäßige Wiederholungsmessungen in Abhängigkeit der Bewegungsraten
- liefern auch in Bodenbewegungsgebieten einen aktuellen Raumbezug (aktuelle Höhen)
- Grundlage für wissenschaftliche Analysen und Modelle
- Nutzung bei der Bergschadensbewertung

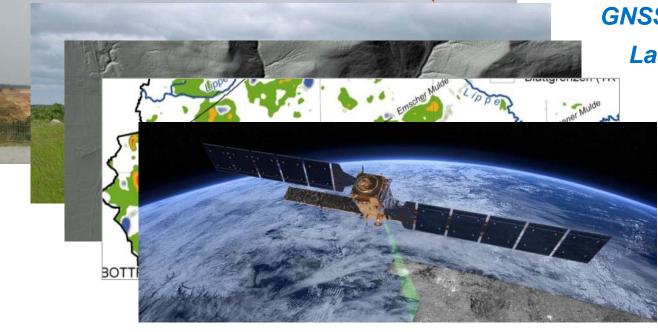

Leitnivellement


"Lage"-Deformationsnetze

Laserscanning

Modelle aus Höhenlinien historischer Karten

Radarinterferometrie


Leitnivellement

GNSS-Deformationsnetze

Laserscanning

DGM aus Höhenlinien historischer Karten

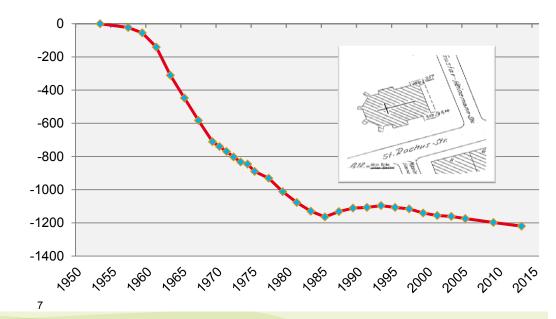
Radarinterferometrie

Bezirksregierung Köln

2 Beobachtungsmethoden

Leitnivellement

- ❖ 5 Gebiete, beobachtet mit individuellem Wiederholungszyklus zwischen 2 und 6 Jahren
- bis zu 1.400 km Nivellementsweg (Doppelnivellement) mit bis zu 5.000 neu zu bestimmende Höhenfestpunkte je Kampagne
- bis zu 35 Messtrupps gleichzeitig im Einsatz bei ca. 6 Wochen Messdauer

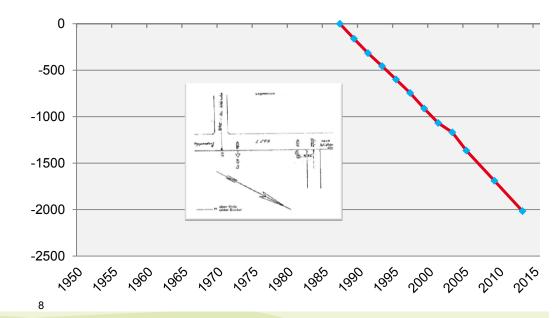


Ergebnisse:

- Zielgröße: aktualisierte präzise NHN-Höhen der HFP im amtlichen Raumbezug 2016
- Aufbau von Zeitreihen
- Modellierung der vertikalen Bodenbewegung

Beispiel:

 Höhenwertänderung [mm] des HFP 4905900115 (Bedburg, Rochuskapelle)

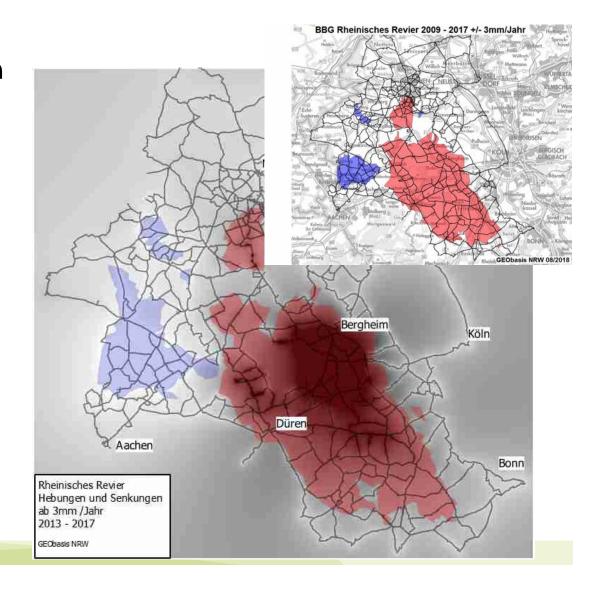


Ergebnisse:

- Zielgröße: aktualisierte präzise NHN-Höhen der HFP im amtlichen Raumbezug 2016
- Aufbau von Zeitreihen
- Modellierung der vertikalen Bodenbewegung

Beispiel:

Höhenwertänderung [mm] des HFP 5005900420 (Heppendorf, L277)



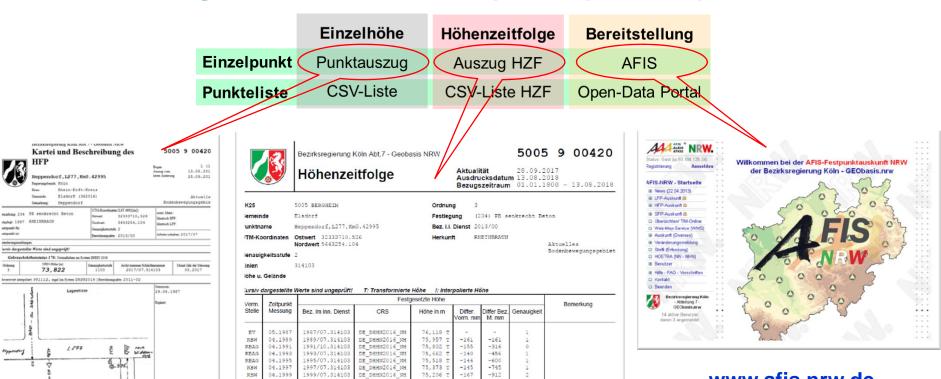


Ergebnisse:

- Zielgröße: aktualisierte präzise NHN-Höhen der HFP im amtlichen Raumbezug 2016
- Aufbau von Zeitreihen
- Modellierung der vertikalen Bodenbewegung
- Abgrenzung von amtlichen Bodenbewegungsgebieten

Bereitstellung Höheninformationen (Neu: Open Data):

2001/07.314103 DE_DHHN2016_NH


2005/07.314103 DE_DHHN2016_NH 2009/07.314103 DE_DHHN2016_NH

2013/07.314103 DE_DHHN2016_NH 2017/07.314103 DE_DHHN2016_NH

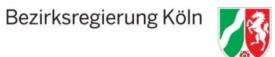
RBW

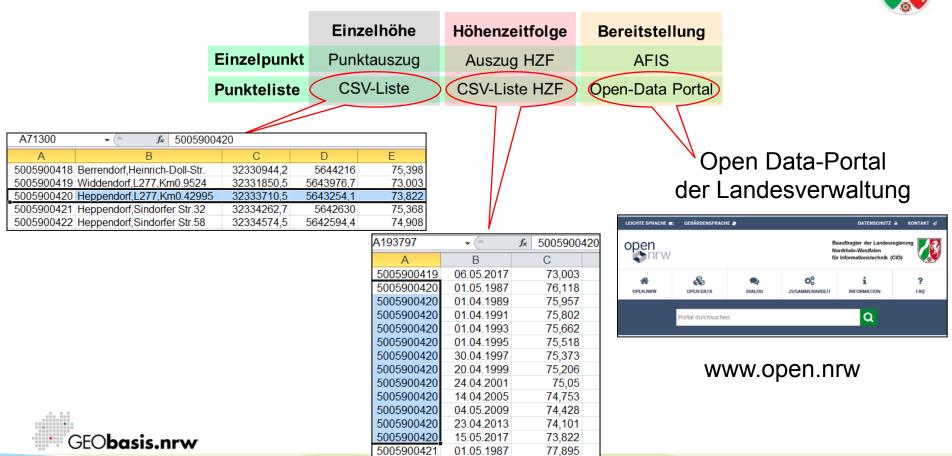
RBW

GEObasis.nrw

75,050

74,753


74,428 T

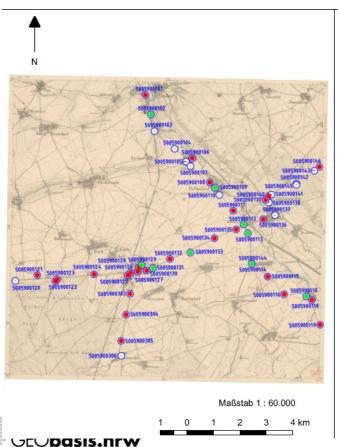

-297 -325

-1690

Einfachmessung

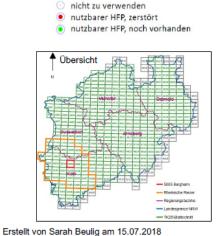
Einfachmessung Einfachmessung www.afis.nrw.de

Bereitstellung der Höheninformationen (Open Data):

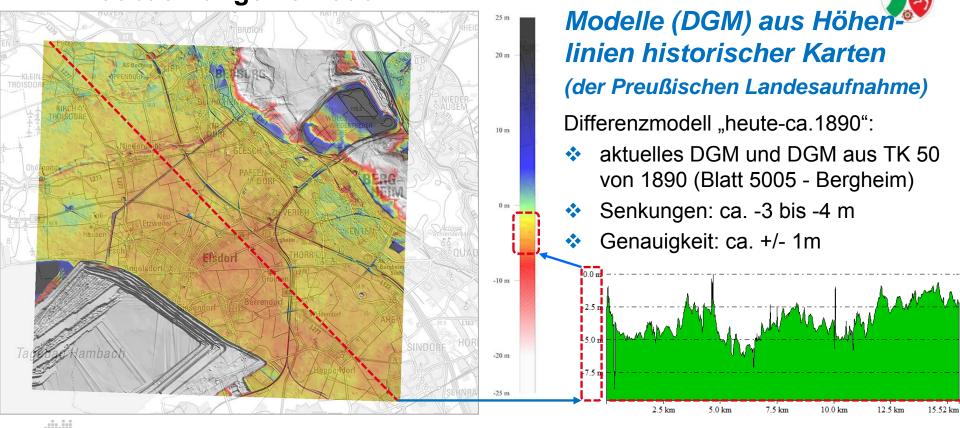

- "Beipackzettel" mit wichtigen Informationen zum Gebrauch
- qualifizierter Auszug weiterhin kostenpflichtig (Zeitgebühr)

Merkzettel zum Gebrauch der Daten aus der Höhenzeitfolgekartei

- Die <u>Höhenwerte</u> zu den einzelnen Messpunkten basieren auf unterschiedlich genau durchgeführten Messverfahren. Messwerte zu verschiedenen Punkten und/oder zu unterschiedlichen Zeitpunkten können nur bedingt vergleichbar sein.
- Die Messwerte können durch <u>Besonderheiten der</u> jeweiligen <u>Punktvermarkung</u> beeinflusst sein.
- Zwischen benachbarten Messwerten kann nicht von einem räumlich wie zeitlich kontinuierlichem Bodenbewegungsverhalten ausgegangen werden.
- Kenntnis vermessungstechnischer Besonderheiten und Hinzuziehung bergbaulicher/geologischer Gutachten für gutachterliche Tätigkeiten erforderlich.



"Historische TK25" der preußischen Neuaufnahme mit Übersicht der Höhenfestpunkte

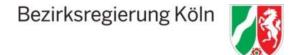

5005 Bergheim

Legende

Lagebezugssystem: UTM 32.Zone (ETRS89)

Modelle (DGM) aus Höhenlinien historischer Karten (der Preußischen Landesaufnahme, ca. 1890)

Bezirksregierung Köln


Bezirksregierung Köln

2 Beobachtungsmethoden

Radarinterferometrie

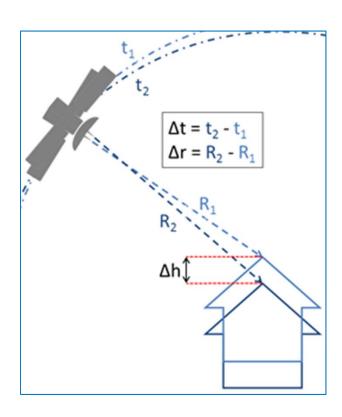
- Radarsatelliten Sentinel 1A und 1B als Teil des Copernicus-Programms
- Überflug alle 6 Tage (je Satellit 12 Tage)
- C-Band-SAR mit 6 cm Wellenlänge, Auflösung bei Wide-Swath-Mode von ca. 5 x 20 Meter bei 250 km Streifenbreite
- Ableitung von relativen Höhenänderungen möglich
- Daten frei verfügbar, Verwendung für Bodenbewegungskataster NRW

3 Bodenbewegungskataster NRW

Ziele:

- Darstellung vertikaler Bodenbewegungen als Web-Dienst (WMS) im Internet
- räumliche Zusammenfassung in Kacheln von 250 m x 250 m
- zeitliche Zusammenfassung für 1 Jahr
- ❖ Bewegungsrate in der Einheit mm/a für signifikante und qualitätsgesicherte Kacheln
- Metadaten zu jeder Kachel

Informationsgewinnung
Aufbereitung
Qualitätssicherung
Bereitstellung



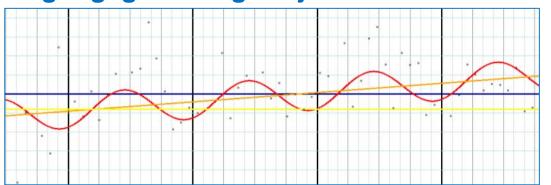
3.1 Informationsgewinnung

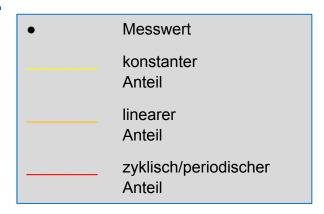
- Persistant Scatter Interferometrie (PSI)
- Differenz der Phasenlage aus zwei Überflügen als Phasendifferenz
- $\Delta r = R_1 R_2$ in LOF (Line Of Sight)
- Überführung der Phasendifferenz Δr in eine Höhenänderung Δh unter der Prämisse, dass keine signifikante Lageverschiebung vorliegt
- Zielgröße: relative Höhenänderung Δh des einzelnen PSI

3.1 Informationsgewinnung

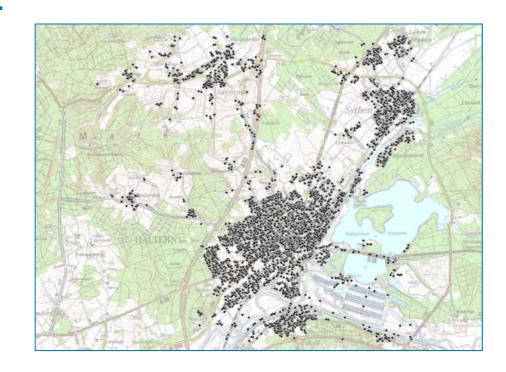
Bezirksregierung Köln

Bezugsepoche

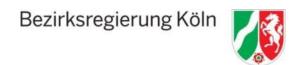

, sal	Α	AJ	AK	AL	AM	AN	AO	AP	AQ	AR	AS
1	NR	D 20120513	D 20120606	D 20120724	D 20120817	D 20120910	D 20121004	D 20121028	0 20121121	D 20121215	D 20130108
2	*	-	-	*			-	-	-		-
2016	38700	0,467	-1,637	2,344	0,206	-1,303	4,06	0	1,332	1,449	0,281
2017	38701	-0,159	-0,867	1,199	0,366	-0,664	2,72	. 0	2,091	0,769	-1,275
2018	38712	-0,837	2,178	0,126	-3,856	0,112	-0,797	' 0	1,291	-0,122	2,616
2019	38713	-1,152	3,16	-0,891	1,35	1,329	0,504	. 0	1,239	-1,395	0,769
2020	38715	0,857	0,381	1,633	-1,38	-3,152	-0,832	9 0	2,835	1,998	-1,453
2021	38716	-3,658	-2,793	-5,807	-0,9	-5,802	-11,421		-0,344	0,893	-4,23
2022	38717	-0,116	0,662	2,897	3,612	1,758	3,45	. 0	0,78	2,39	-1,2
2023	38718	-0,377	2,224	3,088	3,412	2,655	2,489	0	-0,237	1,451	-0,975
2024	38727	-3,524	1,651	1,853	-5,134	-0,645	-0,964	0	-0,84	2,405	5,641
2025	38728	0,41	3,125	-1,024	2,491	-2,826	-0,346		-0,848	3,887	2,269
2026	38729	-3,204	-1,694	0,595	-1,765	-2,58	2,935	. 0	-2,146	1,661	1,403
2027	38730	-1,498	1,804	2,655	-0,94	-1,299	-0,15	0	1,874	4,234	3,709
2028	38731	-0,082	-1,869	-0,96	1,179	3,698	-3,152	! 0	1,035	1,97	0,902
2029	38732	-1,419	-0,341	0,887	-0,647	4,187	5,455	0	-2,387	1,38	-3,343
2030	38743	-0,988	-0,398	-0,157	-0,429	1,572	3,294	. 0	-0,448	3,754	1,485
2031	38769	-1,85	1,445	0,067	-3,116	-2,134	-1,756	0	0,01	1,975	1,131
2032	38770	1,664	2,557	-4,084	-8,622	-2,829	0,338	. 0	5,012	3,676	0,768
2033	38771	-0,913	-0,237	-0,202	-1,672	-2,096	-3,245	. 0	0,316	1,651	0,648
2034	38773	-0,812	3,884	-0,331	-1,308	1,587	6,48	0	1,033	-0,633	2,617
2035	38774	0,142	1,27	-2,95	-0,601	0,428	4,311	0	0,413	1,771	1.76
2036	38789	- 0	0	0	0	0		0	- 0	. 0	
2037	38790	-0,515	2,395	4	0,449	3,408	-0,339	0	-0,592	2,689	-1,298
2038	38791	-1,164	5,644	1,885	0,305	1,138	-1,641	0	2,397	0,922	0,048
2039	38794	1,938	2,447	0,63	0,411	2,559	3,982	. 0	-0,184	2,47	0,653
2040	38795	1,87	2,557	-0,023	2,243	1,8	3,128	. 0	0,453	1,858	0,073
2041	38807	0,192	2,73	-0,12	1,038	1,474	-4,192	9 0	1,309	-1,401	-1,488
2042	38808	-1,533	2,103	1,252	-1,701	2,137	-4,421	0	-0,146	-2,079	1,12
2043	38809	3,226	1,752	1,54	1,266	0,708	-0,248	0	-0,157	2,224	-2,29
2044	38810	-0,378	1,397	-0,177	-3,745	3,475	2,611	0	-2,086	1,95	-1,282
2045	38812	1,319	4,16	1,897	1,629	4,028	3,159	0	-1,684		-1,493
2046	38822	1,602	1,397	2,102	0,409	0,27	-1,615	0	1,516	1,139	-0,448
2047	38823	-0,737	0,163	-0,347	-3,589	4,772	-4,149	0	-0,201	-2,015	1,713


Referenzpunkt

Bewegungsgleichung für jeden einzelnen PSI:

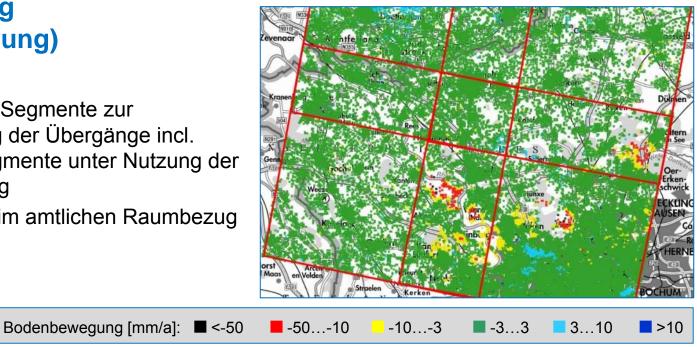


Zielgröße: linearer Anteil [mm/a] als Maß der Bodenbewegung



Ableitung der Höhenänderung:

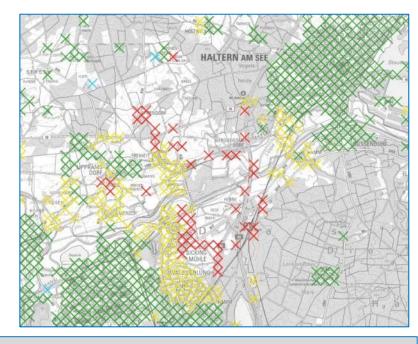
- Bildung von Zeitreihen für große Punktmengen (PSI-Punkte)
- hohe Punktdichte in bebauten Gebieten, jedoch keine konkret anmessbaren Punkte
- geringe Punktdichte in ländlichen Gebieten
- Zusammenfassung von PSI in Kacheln von 250m x 250m inkl. Ausreißerdetektion





Bodenbewegung (Qualitätssicherung)

- Neulagerung der Segmente zur Homogenisierung der Übergänge incl. Matching der Segmente unter Nutzung der HFP zur Lagerung
- Folge: Lagerung im amtlichen Raumbezug

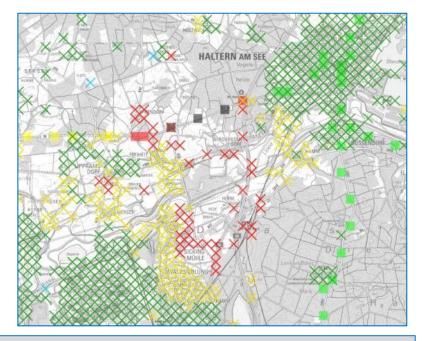


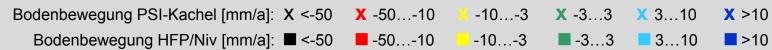
Ergebnisdarstellung in Kacheln:

- Angabe des Maßes der Bodenbewegung für jede Kachel pro Kalenderjahr
- Für ca. 1/3 der Kacheln liegen Ergebnisse vor
- Zuweisung in Bewegungsklassen mit farblicher Abstufung

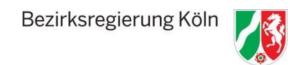
Bodenbewegung PSI-Kachel [mm/a]: **X** <-50 **X** -50...-10 **X** -10...-3 **X** -3...3 **X** 3...10 **X** >10

3.3 Qualitätssicherung

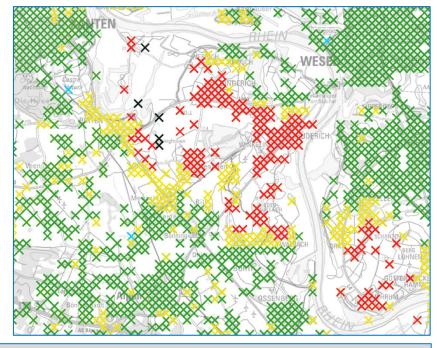



Vergleich mit Leitnivellement:

Zeitraum Höhenänderungen des Leinivellements:

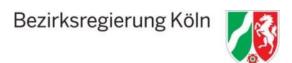

15.05.2014-20.04.2016

Zeitraum Höhenänderungen des Bodenbewegungskatasters: 01.04.2015-01.04.2016



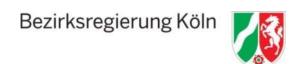
3.4 Bereitstellung

Beispiel Niederrhein


großräumige Senkung

Bodenbewegung PSI-Kachel [mm/a]: **X** <-50 **X** -50...-10 **X** -10...-3 **X** -3...3 **X** 3...10 **X** >10

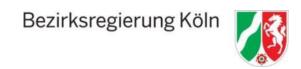
3.4 Bereitstellung


Präsentation und Nutzung:

- Information von Bürgern, Bergbaubetreibenden und Wasserwirtschaft
- Nutzung im Nachbergbau (z.B. "Flurabstandsprognose")
- Unterstützung von Überwachungsmaßnahmen von (Rohr-) Leitungsbetreibern
- Planung zukünftiger Nivellementskampagnen der Landesvermessung (Ausdehnung, Turnus)
- Integrative Nutzung mehrerer Beobachtungsverfahren

4 Methodenvergleich und Ausblick

		Methode								
		Leit- nivellement	GNSS-Netz	Laser- scanning	Höhenlinien hist. Karten	Radarinter- ferometrie (allgemein)	Radarinter- ferometrie (BBK NRW)			
	Flächenabdeckung	punktuell ca. 30% NRW	punktuell ca. 10% NRW	100%	100%	partiell > 30%	gekachelt ca. 30 %			
_	Epochenlänge	2-5 Jahre	2-4 Jahre	5-6 Jahre	ca. 120 Jahre	6 Tage	1 Jahr			
Kriterie	absolute Höhen	•	•	•	•	-	-			
ig	Genauigkeit (absolut)	1-10 mm	1-10 mm	5-10 cm	2-5 m	-	-			
Ÿ	relative Höhenänderungen	0	0	0	0	•	•			
	Genauigkeit (relativ)	ca. 3 mm/a	3 mm/a	5 cm/a	ca. 5 cm/a*	?? mm/a	3 mm/a			
	Bezugspunkt oder Bezugsfläche	Punkt	Punkt	< 1 x 1 m	> 5 m	ca. 5 x 20 m	250 x 250 m			
	Kosten	hoch	hoch	mittel	mittel	niedrig	niedrig			


Vgl. hierzu: Österreichische Geodätische Kommission http://www.oegk-geodesy.at/projekte/bodenbewegung/Beilage1.pdf

4 Methodenvergleich und Ausblick

- Raumbezug 2016 bietet aktuelle hochgenaue Basis für Vermessungstätigkeiten
- in NRW muss der anthropogenen Einflüsse besonders Rechnung getragen werden
- bisherige Messmethoden werden um neue Verfahren der satellitengestützten Radarinterferometrie ergänzt: Integrative Nutzung mehrerer Beobachtungsverfahren
- es werden detailliertere, genauere und aktuellere Aussagen über Bodenbewegungen (Höhenänderungen) möglich sein
- Qualitässicherungsmaßnahmen liefern verifizierte Angaben für räumliche Kacheln
- das Bodenbewegungskataster hat das Potential, eine Vielzahl von Nutzern über Bereiche mit vertikalen Bodenbewegungen zu informieren

Räumlich denken. Praktisch entscheiden.

Bezirksregierung Köln Dezernat 71 – Datenstandards, Raumbezug 50606 Köln

Dienstgebäude: Muffendorfer Str. 19-21, 53177 Bonn

Telefon: 0221 / 147 - 4200 Telefax: 0221 / 147 - 4182

E-Mail: bernd.krickel@bezreg-koeln.nrw.de

Internet: www.bezreg-koeln.nrw.de

Identifikation von kritischen Bodenparametern für die Risikoabschätzung von Bodensenkungen durch mikrobiellen Abbau von organischen Substanzen

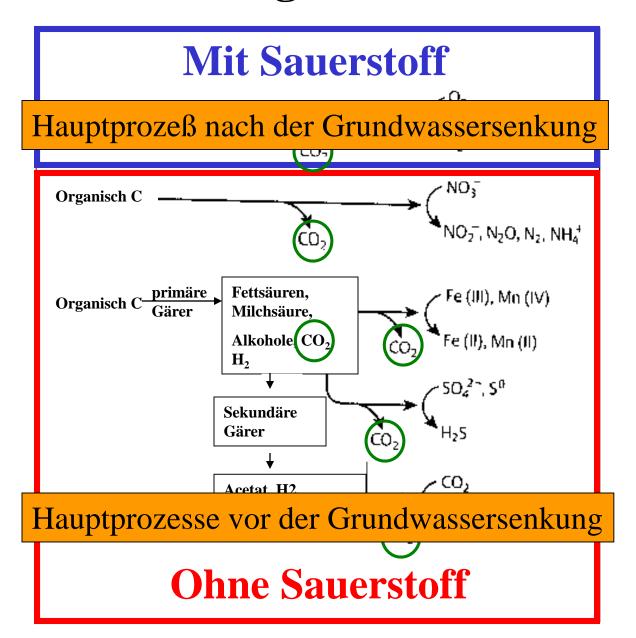
Prof. Dr. Sylvia Schnell Institut für Angewandte Mikrobiologie Justus-Liebig Universität Giessen

Ziel der Untersuchung

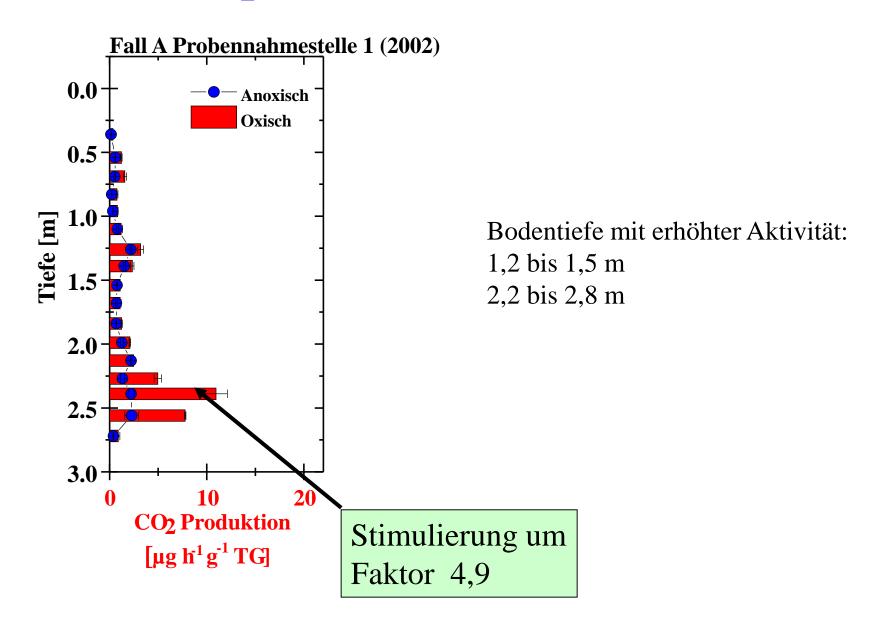
Kann man mikrobiologische oder bodenkundliche Parameter finden,

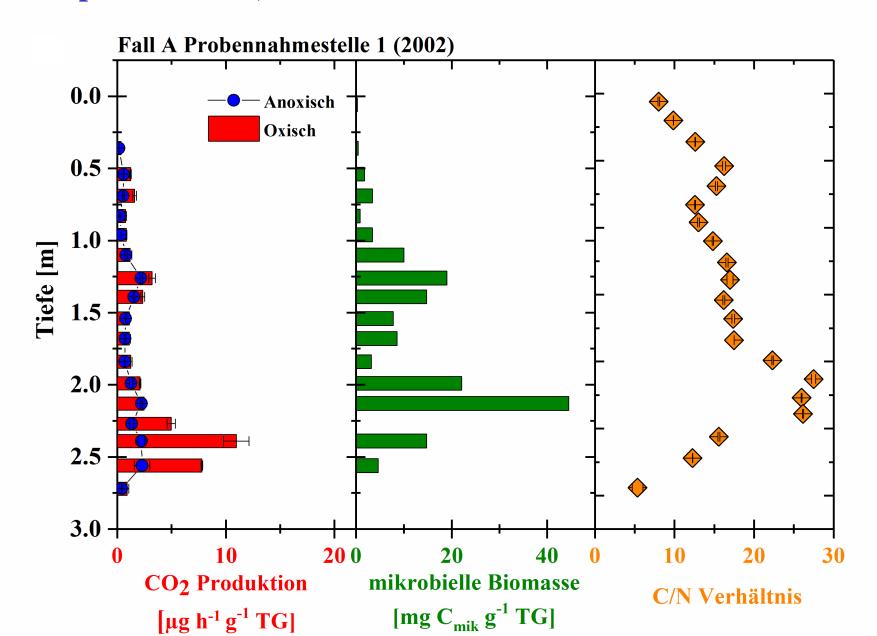
- a) die mit der Stärke der Bodensenkungen korrelieren?
- b) die zur Vorhersage von weiteren Bodensenkungen geeignet sind?

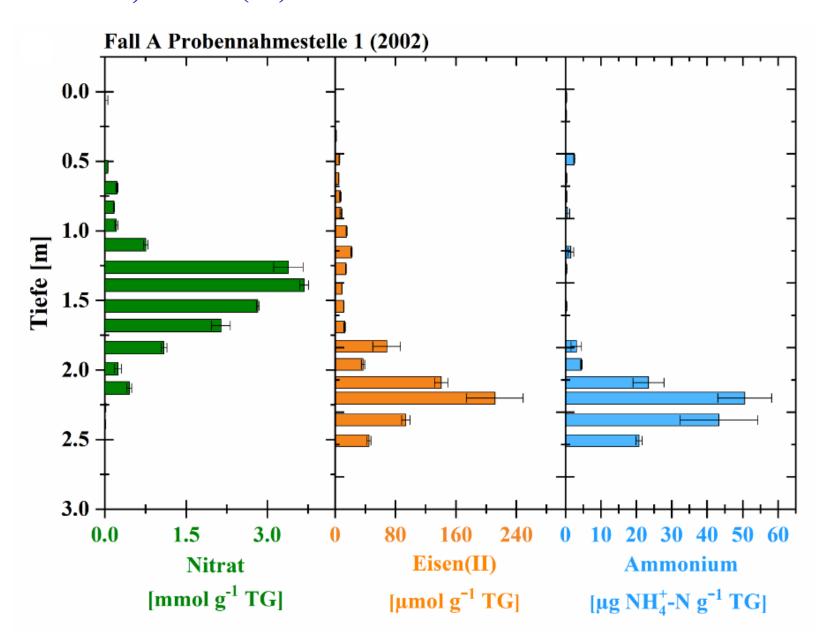
Probenahmen in Bedburg



Grundwasserabsenkung seit 1957


Standort B im Juni 2002


Mikrobiologische Prozesse


Respirationsrate (25°C)

Respirationsrate, mikrobielle Biomasse und C/N Verhältnis

Nitrat-, Eisen(II) und Ammomiumkonzentration

Exkurs Mikrobiologie

Ammoniumoxidation durch Mikroorganismen:

Nitrifikation

$$NH_4^+ + 2O_2 \rightarrow NO_3^- + 2H^+ + H_2O$$

Ammoniumoxidation benötigt Sauerstoff

Nitratreduktion durch Mikroorganismen

Denitrifikation

$$2 \text{ NO}_3^- + 2 \text{ H}^+ + \text{ organisches Material} \rightarrow \text{N}_2 + \text{CO}_2^- + \text{H}_2\text{O}$$

Ammonifikation

$$NO_3^- + H^+ + organisches Material \rightarrow NH_4^+ + CO_2^- + H_2O$$

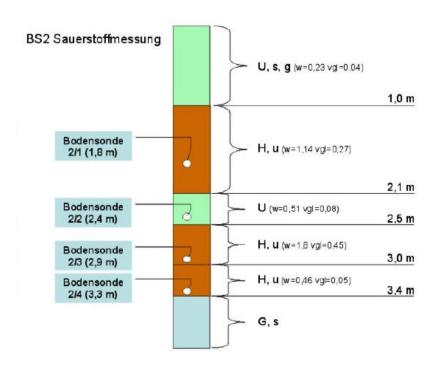
Nitratreduktion nur in Abwesenheit von Sauerstoff

Exkurs Mikrobiologie

Eisen(III) Reduktion durch Mikroorganismen

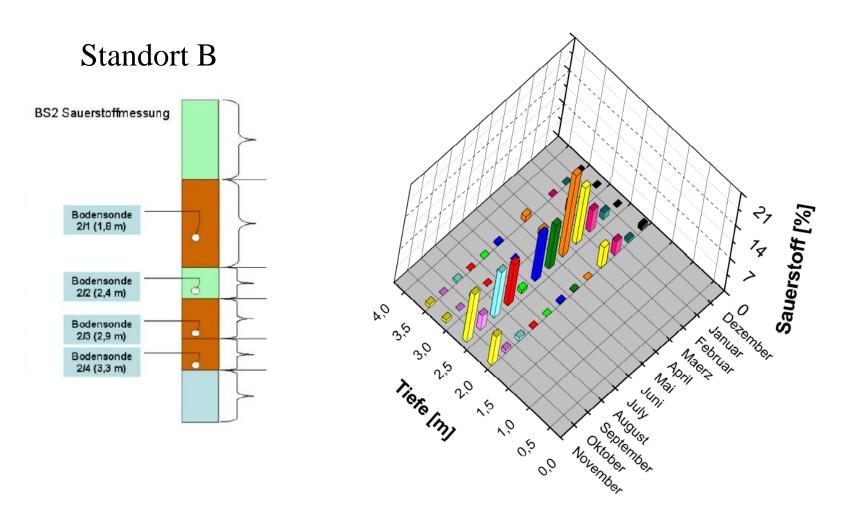
Nur in Abwesenheit von Sauerstoff

Fe(III) + organisches Material
$$\rightarrow$$
 Fe(II) + CO₂ + H₂O

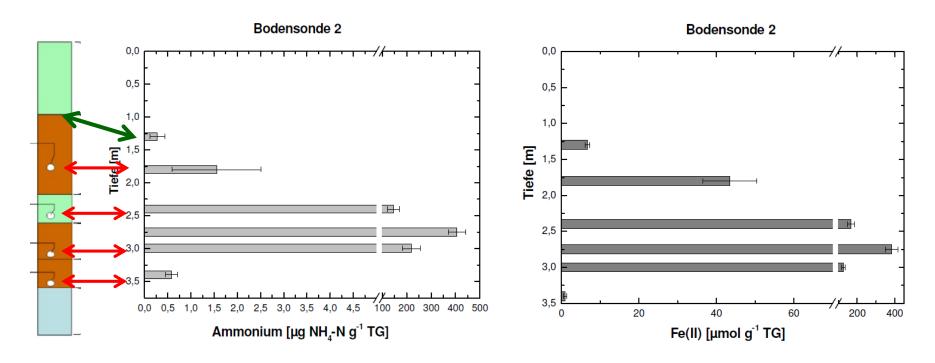

Eisen(II) Oxidation durch Mikroorganismen/chemische Reaktion

Nur in Anwesenheit von Sauerstoff

$$Fe(II) + O_2 \rightarrow Fe(III)$$


Überprüfung der Verfügbarkeit von Sauerstoff in verschiedenen Bodentiefen mittels Bodensonden

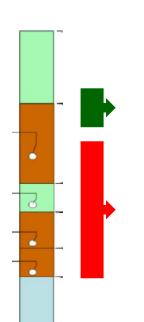
Standort B, in unmittelbarer Nähe zum Schurf


Torfschicht in Bodentiefe von 1,0 - 2,1 m und 2,5 - 3,4 m

Sauerstoffkonzentrationen in verschiedenen Tiefen der Bodensonde 2 von Dez. 04 bis Nov. 05

Niedrige Sauerstoffkonzentrationen in den Torfschichten mit hoher Wasserhaltekapazität, nur im Febr., März und Nov. etwas erhöhte Werte in 1,8 m Bodentiefe.

Kontrollmessungen der Ammonium- und Eisen(II)-Konzentrationen in den Tiefen von Bodensonde 2 nach Ausgrabung der Sonden



Unterhalb von 1,8 m erhöhte Ammonium und Fe(II) Konzentrationen
→ Gute Übereinstimmung mit Sauerstoffmessungen

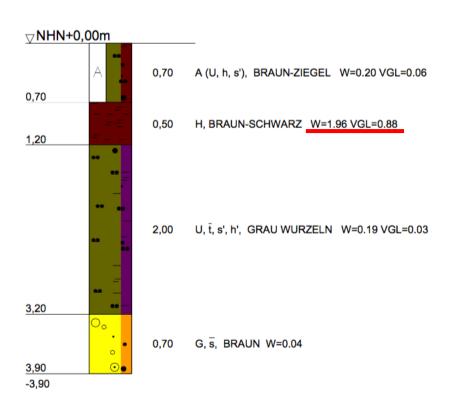
Obere Torfschicht jedoch niedrige Ammonium und Fe(II) Konzentration

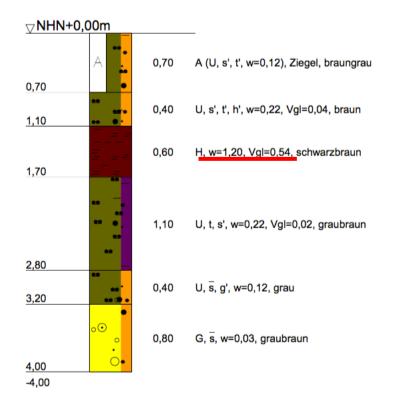
→ Anwesenheit von Sauerstoff

Prognose zum mikrobiellen Abbau

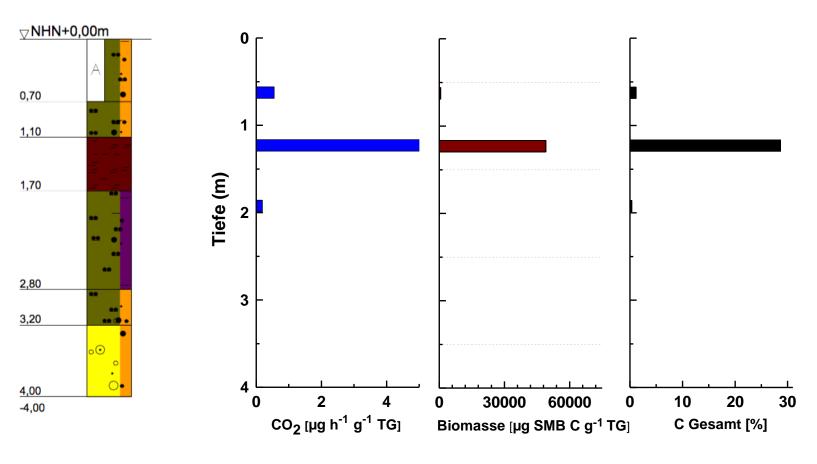
Obere Torfschicht wird mit Sauerstoff relativ schnell abgebaut → **Bodensenkung**

Untere Torfschichten werden ohne Sauerstoff sehr langsam abgebaut

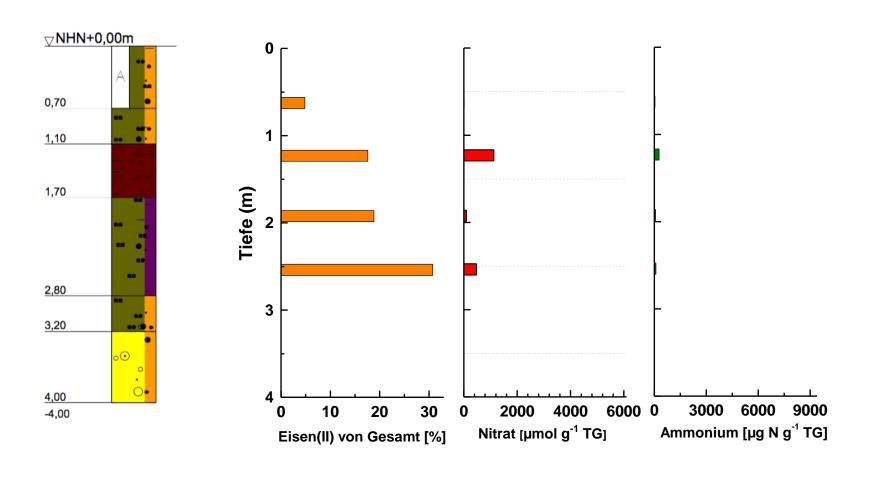

Hypothese

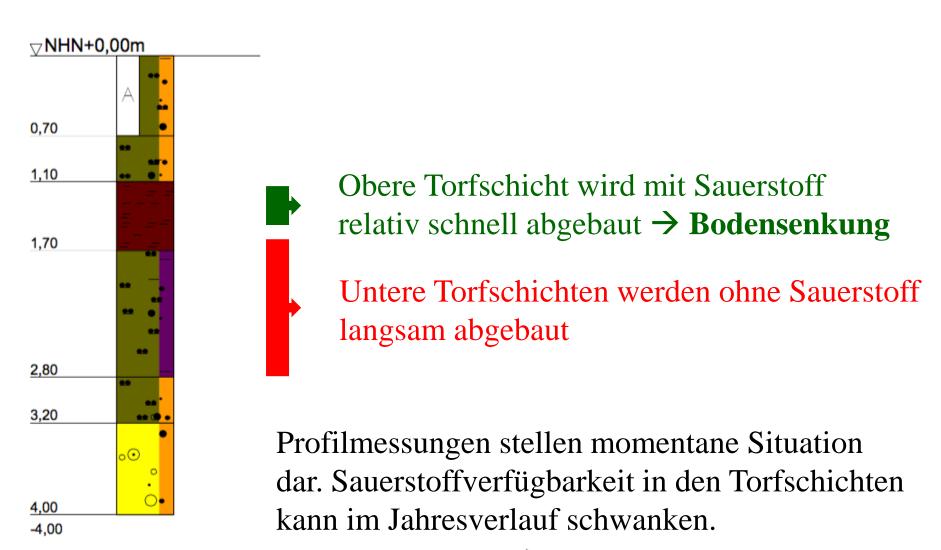

Abbau von humosen Bodenschichten ist korreliert mit: Anwesenheit von Sauerstoff, Nitrat, erhöhte Respirationsrate Abwesenheit von Fe(II), Ammonium

Überprüfung der Hypothese

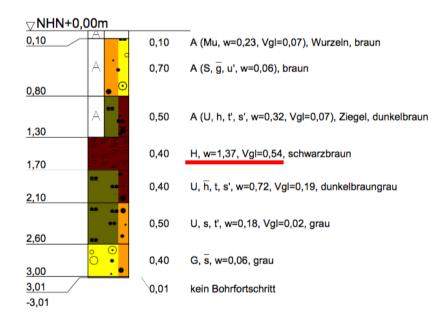

Analyse von Bodenprofile, die bereits vor 20-44 Jahren mit klassischen bodenkundlichen Messungen untersucht wurden und deren Oberflächensenkungen durch Präzisionshöhenmessungen gut dokumentiert sind. Drei von zwölf Projekte sollen aufgezeigt werden.

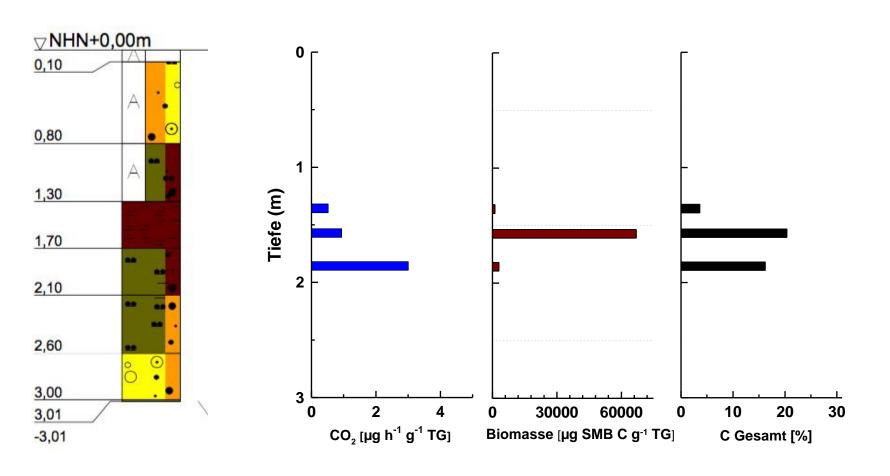
BS 2290 Projekt 9 1989 RWE Projekt 9 09.09.2014 RWE



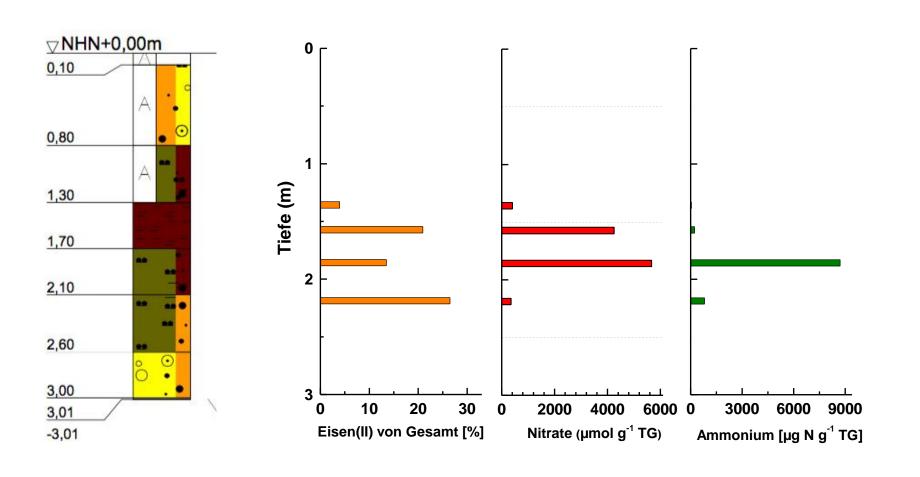

Höhenänderung: -171 mm in 23 Jahren, aktuelle Rate: -2,3 mm yr⁻¹

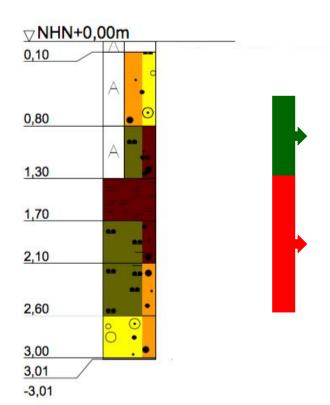
Höhenänderung: -171 mm in 23 Jahren, aktuelle Rate: -2,3 mm yr⁻¹


Höhenänderung: -171 mm in 23 Jahren, aktuelle Rate: -2,3 mm yr⁻¹

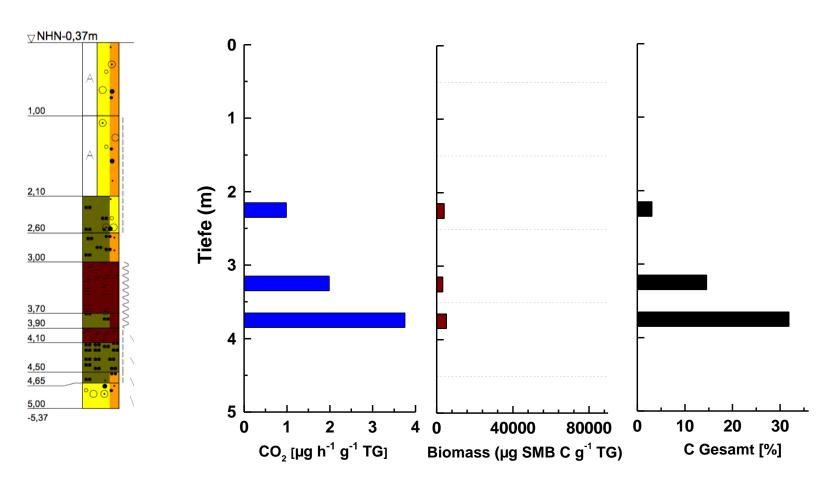

BS 2292 Projekt 9 1989 RWE

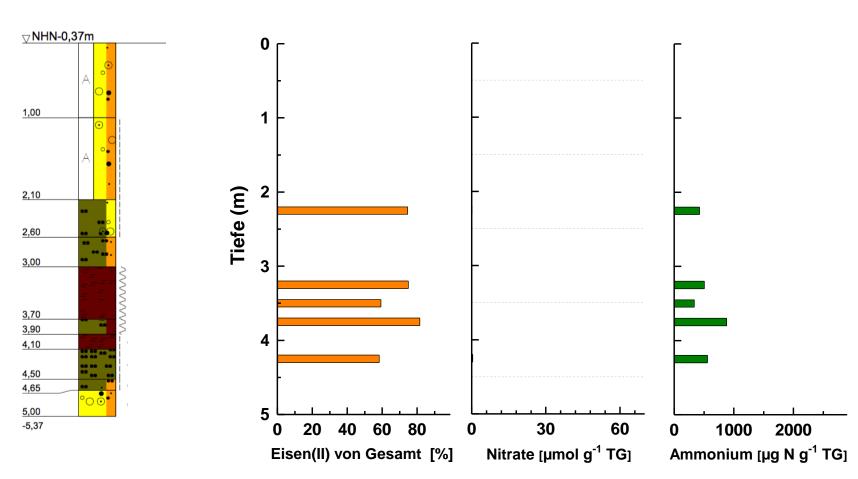
▽NHN+0,00m A (U, g, s, h), BRAUN-ROT ZIEGELW=0.17 VGL=0.06 0,80 0,80 0,40 H, DUNKELBRAUN W=1.03 VGL=0.710 1,20 U, h, s', GRAU-BRAUN 0,40 W=0.87 VGL=0.20 1,60 U, s, t', h', GRAU 0,90 W=0.17 VGL=0.03 2,50 0 <u>.</u>⊙ G, s, GRAU W=0.06 0,50 3,00 -3,00


Projekt 9 09.09.2014 RWE

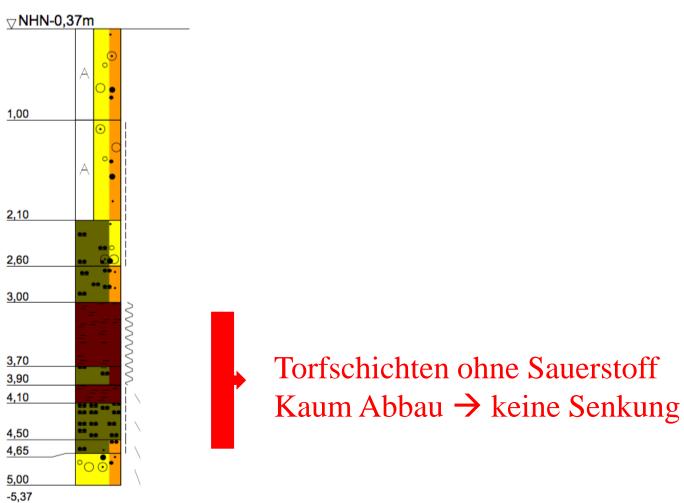

Höhenänderung: -73 mm in 23 Jahren, aktuelle Rate: -3,9 mm yr⁻¹

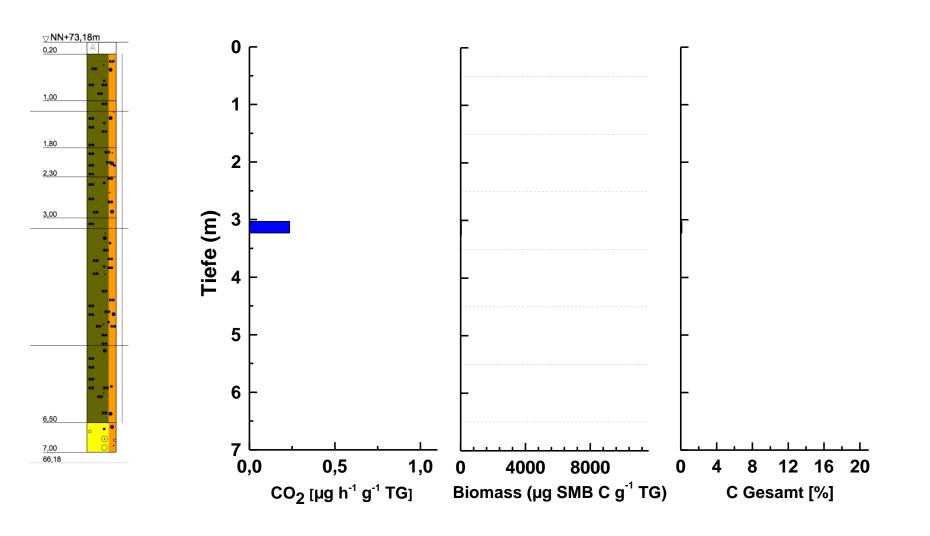
Höhenänderung: -73 mm in 23 Jahren, aktuelle Rate: -3,9 mm yr⁻¹

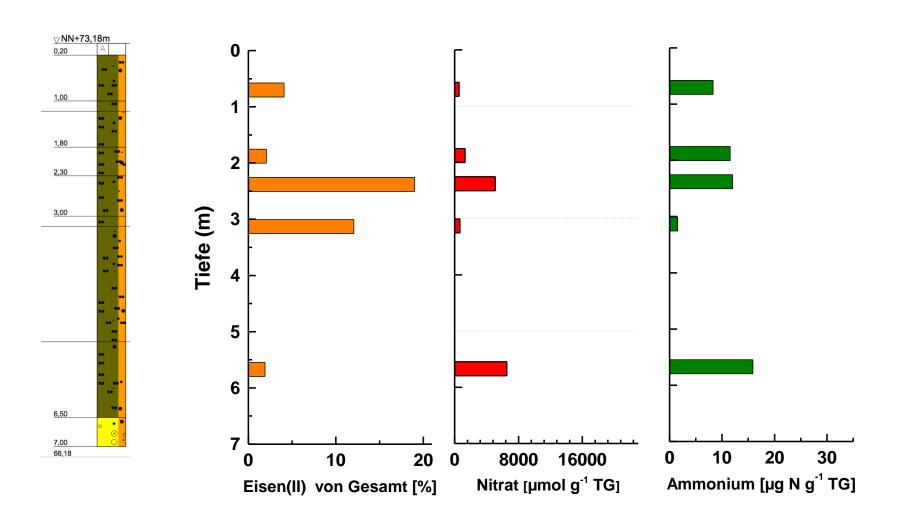

Höhenänderung: -73 mm in 23 Jahren, aktuelle Rate: -3,9 mm yr⁻¹

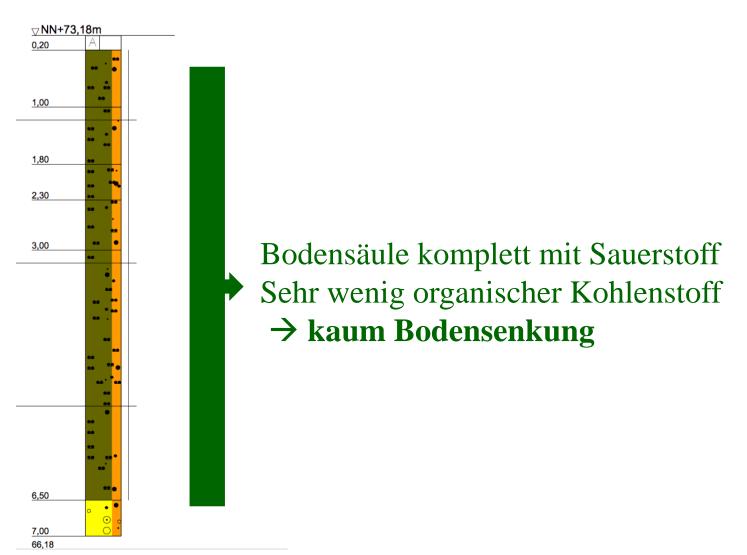

Obere Torfschicht wird mit Sauerstoff relativ schnell abgebaut → **Bodensenkung**

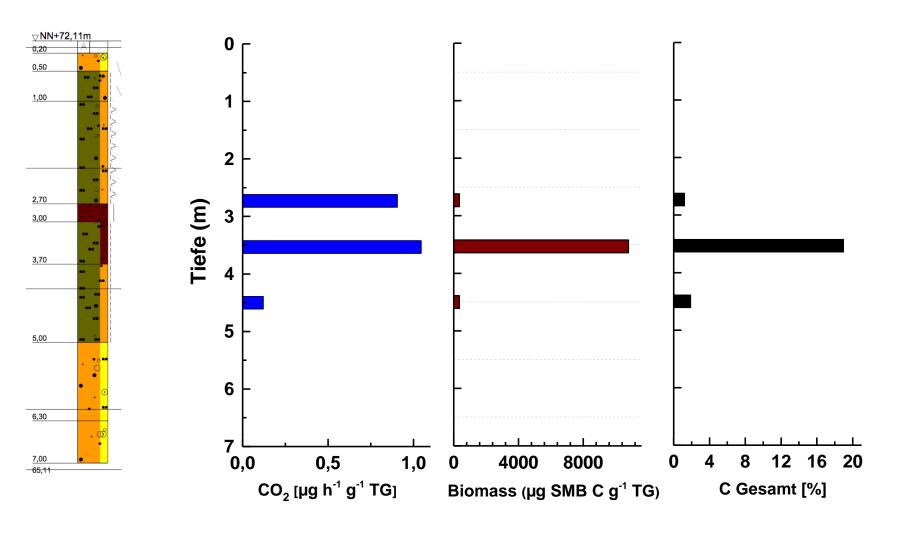
Torfschichten ohne Sauerstoff, jedoch hohe
Nitratkonzentrationen
(landwirtschaftlicher Einfluß?)
begünstigt Abbau

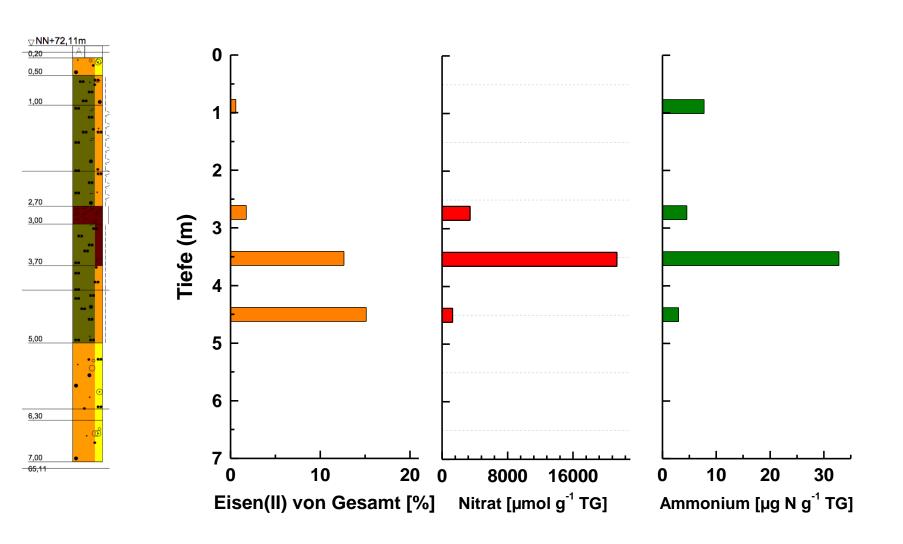

Höhenänderung gering in 20 Jahren, Gebäudepunkte nicht repräsentativ

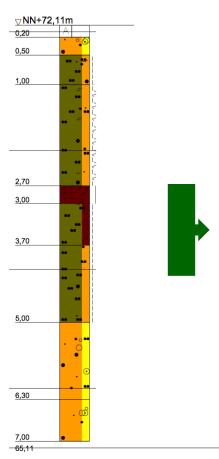

Höhenänderung gering in 20 Jahren, Gebäudepunkte nicht repräsentativ


Höhenänderung gering in 20 Jahren, Gebäudepunkte nicht repräsentativ


Höhenänderung -69 mm in 44 Jahren, aktuelle Rate -0,1 mm yr⁻¹


Höhenänderung -69 mm in 44 Jahren, aktuelle Rate -0,1 mm yr⁻¹


Höhenänderung -69 mm in 44 Jahren, aktuelle Rate -0,1 mm yr⁻¹


Höhenänderung: -551 mm in 44 Jahren, aktuelle Rate: -4,0 mm yr⁻¹

Höhenänderung: -551 mm in 44 Jahren, aktuelle Rate: -4,0 mm yr⁻¹

Höhenänderung: -551 mm in 44 Jahren, aktuelle Rate: -4,0 mm yr⁻¹

Torfschicht mit Sauerstoff Abbau von organischer Kohlenstoff läuft weiterhin ab

→ weiterhin Bodensenkungen

Besonderheit: hohe Nitratkonzentrationen in der Torfschicht (Grundwassereintrag?) begünstigen zusätzlich den Abbau unter anoxischen Bedingungen.

Fazit

- Ist Sauerstoff in humosen Bodenschichten vorhanden, werden die organische Bestandteile schneller abgebaut (Mineralisierung).
- Die Mineralisierung kann Jahrzehnte andauern.
- Ammonium- und Nitratkonzentrationen verlaufen gegenläufig; ebenso Nitrat- und Eisen(II) Konzentrationen
- Die Konzentrationen von Ammonium, Nitrat und Eisen(II) erlauben Rückschlüsse auf die Anwesenheit von Sauerstoff und ermöglichen Prognosen über zukünftige Senkungen.
- ➤ Die organische Bodenschicht mineralisiert von oben nach unten.
- ➤ Tieferliegende Schichten bleiben unverändert. Die organischen Bestandteile bleiben erhalten, bis Sauerstoff eindringt.

DANKE

Dr. Stefan Ratering Rita Geißler-Plaum

Ulrich Wilden Dr. Philipp Zeimetz Manfred Neumann

Vielen Dank für Ihre Aufmerksamkeit und Ihr Interesse!!!

Naturwissenschaftlich-Technische Fakultät

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Experimentelle Untersuchungen zum Verformungsverhalten von Torf

Univ.-Prof. Dr.-Ing. Richard A. Herrmann Institut für Geotechnik der Universität Siegen

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Übersicht

- 1. Einleitung
- 2. Untersuchungen zur Bestimmung und zum Verhalten feinkörniger Böden mit organischen Bestandteilen
- 3. Klassifizierung von (organischen) Böden
- 4. Bodenkennwerte der Versuchsböden
- 5. Korrelationen
- 6. Kompressionsversuche an den Versuchsböden
- 7. Zusammenhang zwischen organischen Bestandteile und Setzungen
- 8. Quellen

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Einleitung

Zur sicheren Gründung von Bauwerken, d. h. zur Abtragung der Bauwerkslasten aus allen Disziplinen des Bauingenieurwesens – Konstruktionen des Hochbaus, des Wasserbaus, des Tunnelbaus und Infrastrukturmaßnahmen, aber auch bei der Umnutzung von Bestandsbauwerken, sind detaillierte Kenntnisse des Baugrundes erforderlich.

Schäden die auf eine Missachtung der Bodenkennwerte bzw. nicht ausreichende Baugrunderkundung zurückzuführen waren, zeigten sich in der Vergangenheit zumeist als sehr kostenintensiv in der Sanierung und im Extremfall mit einer Havarie des gesamten Bauwerkes (vgl. A20 bei Tribsees, "Erfder Damm", "Husumer Buckelpiste".

Insgesamt sind nach (Höper, 2007) ca. 4 % der Fläche Deutschlands (ca. 13.000 km²) als Moorgebiete ausgewiesen und etwa 5 bis 8 % weltweit (Taylor, 1983).

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Untersuchungen zur Bestimmung und zum Verhalten feinkörniger Böden mit organischen Bestandteilen

- Leitfaden für "Probenentnahme, Bodenansprache und Laboruntersuchungen bei Böden mit organischen Bestandteilen", 2011
- Bestimmung des organischen Anteils in feinkörnigen Böden, 2012
- Untersuchungen zum Setzungsverhalten von feinkörnigen Böden mit organischen Bestandteilen und Untersuchungen zur Klassifizierung von feinkörnigen Böden mit organischen Bestandteilen, 2013
- Weitergehende Untersuchungen zum Setzungsverhalten von feinkörnigen Böden mit organischen Bestandteilen, 2015

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Untersuchungen zur Bestimmung und zum Verhalten feinkörniger Böden mit organischen Bestandteilen

Leitfaden für "Probenentnahme, Bodenansprache und Laboruntersuchungen bei Böden mit organischen Bestandteilen, 2011

- Auf der Grundlage von geotechnischen Erkundungen in Form von Kleinrammbohrungen sind ausreichend genaue Erkundungen und Aufnahmen hinsichtlich der organischen Bestandteile eines Bodens möglich.
- 2. Eine **Fachkraft** ist befähigt mit Hilfe einer visuellen und olfaktometrischen Bodenansprache an den erbohrten Bodenproben organische Bestandteile sicher ausfindig zu machen.

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Untersuchungen zur Bestimmung und zum Verhalten feinkörniger Böden mit organischen Bestandteilen

Leitfaden für "Probenentnahme, Bodenansprache und Laboruntersuchungen bei Böden mit organischen Bestandteilen, 2011

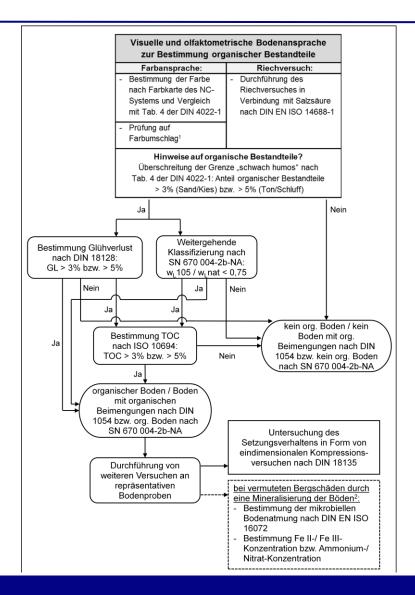
- 3. Mit der erreichten Probenqualität können weiterreichende Laboruntersuchungen zum organischen Anteil durchführen.
- 4. Der **Standardversuch der Bodenmechanik** zur Bestimmung des organischen Anteils eines Bodens (**Glühverlust nach DIN 18128**), liegt die bautechnische Relevanz betreffend, immer **auf der sicheren Seite** da ein größerer Anteil ermittelt wird, als tatsächlich an organischen Bestandteilen vorliegt.

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Untersuchungen zur Bestimmung und zum Verhalten feinkörniger Böden mit organischen Bestandteilen

Bestimmung des organischen Anteils in feinkörnigen Böden, 2012

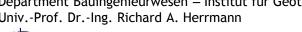
- 1. Querschnittsstudie
- 2. Literaturrecherche
- 3. Erarbeitung eines Flussdiagrammes zur visuellen und olfaktometrischen Bodenansprache zur Bestimmung organischer Bestandteile


Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Untersuchungen zur Bestimmung und zum Verhalten feinkörniger Böden mit organischen Bestandteilen

Flussdiagramm zur Bodenansprache Institut für Geotechnik Universität Siegen, 2012

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann



Klassifizierung von (organischen) Böden

Korngrößenfraktionen nach DIN EN ISO 14688-1:2013

Bereich	Benennung	Kurzzeichen	Korngröße [mm]
	großer Block	LBo	> 630
sehr	Block	Во	> 200 bis 630
grobkörniger Boden	Stein	Со	> 63 bis 200
	Kies	Gr	> 2,0 bis 63
	Grobkies	CGr	> 20 bis 63
	Mittelkies	MGr	> 6,3 bis 20
grobkärniger Beden	Feinkies	FGr	> 2,0 bis 6,3
grobkörniger Boden	Sand	Sa	> 0,063 bis 2,0
	Grobsand	CSa	> 0,63 bis 2,0
	Mittelsand	MSa	> 0,2 bis 0,63
	Feinsand	FSa	> 0,063 bis 0,2
	Schluff	Si	> 0,002 bis 0,063
	Grobschluff	CSi	> 0,02 bis 0,063
feinkörniger Boden	Mittelschluff	MSi	> 0,0063 bis 0,02
	Feinschluff	FSi	> 0,002 bis 0,0063
	Ton	CI	≤ 0,002

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Klassifizierung von (organischen) Böden

Benennung und Beschreibung organischer Böden nach DIN EN ISO 14688-1:2013

Benennung	Beschreibung			
Faseriger Torf	faserige Struktur, leicht erkennbare Pflanzenstruktur; besitzt gewisse Festigkeit			
Schwach faseriger Torf	erkennbare Pflanzenstruktur; keine Festigkeit des erkennbaren Pflanzenmaterials			
Amorpher Torf	keine erkennbare Pflanzenstruktur; breiige Konsistenz			
Mudde (Gyttja)	pflanzliche und tierische Reste; mit anorganischen Bestandteilen durchsetzt			
Humus	pflanzliche Reste, lebende Organismen und deren Ausscheidungen; bilden mit anorganischen Bestandteilen den Oberboden (Mutterboden)			

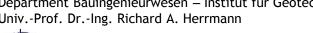
Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Klassifizierung von (organischen) Böden

Bestimmung des Zersetzungsgrades durch den Ausquetschversuch nach DIN EN ISO 14688-1:2013

Begriff	Zersetzungsgrad	Quetsch-Rückstände	Abgepresstes
faserig	kein	deutlich erkennbar	nur Wasser
			keine Feststoffe
leicht faserig	mäßig	erkennbar	trübes Wasser
			< 50 [%] Feststoffe
nicht faserig	völlig	nicht erkennbar	wässriger Brei
			> 50 [%] Feststoffe

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann



Klassifizierung von (organischen) Böden

Klassifizierung von Böden ≤ 2 mm Korngröße mit organischen Anteilen nach DIN EN ISO 14688-2:2013

Bezeichnung	organischer Anteil [M%] der Trockenmasse
schwach organisch	2 bis 6
mittel organisch	6 bis 20
stark organisch	> 20

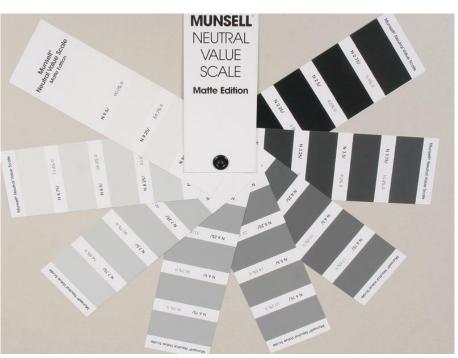
Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Klassifizierung von (organischen) Böden

Humusgehalte von Böden nach Färbung oben: nach DIN 4022-1:1987, unten: nach DIN 4022-1:1969

Benennung	Sand u	nd Kies	Ton un	nd Schluff	
	Humusgehalt [M%]	Farbe [-]	Humusgehalt [M%]	Farbe [-]	
schwach humos	1-3	grau	2-5	Mineralfarbe	
humos	>3-5	dunkel-grau	>5-10	dunkelgrau	
stark humos	>5-10	schwarz	>10	schwarz	
Benennung	sandige	Böden	tonige Böden		
	Humusgehalt [M%]	Farbe [-]	Humusgehalt [M%]	Farbe [-]	
humusarm	≤ 1	deutlich grau	≤ 2	Mineralfarbe	
schwach humos	>1-2	tief grau	>2-5	Iviii le la liai be	
humos	>2-5	tier grau	>5-10	tief grau	
stark humos	>5-10	schwarz	>10-15	schwarz	
sehr stark humos	>10-15	Scriwarz	>15-20	. Scriwarz	

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann



Klassifizierung von (organischen) Böden

Humusgehalte von Böden nach Färbung Unbunte Farben – beispielhaft mit NCS- und Munsell-Farbtafeln

Images: www.torso.de

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Klassifizierung von (organischen) Böden

Bezeichnung der Böden nach DIN 1054:2010

Nichtbindige Böden nach DIN 1054:2010

- Kornanteil d<0,063 mm ≤ 40 M.-% (DIN 18196:2011)
- Anteil org. Substanz (Glühverlust V_{gl}) ≤ 3 M.-%(DIN 1054:2010)
- Bodengruppen nach DIN 18196:2011: GE, GW, GI, SE, SW, SI, GU, GT, SU, ST bzw. GU*, GT*, SU*, wenn der Feinanteil das Bodenverhalten nicht bestimmt.

Bindige Böden nach DIN 1054:2010

- Kornanteil d<0,063 mm > 40 M.-% (DIN 18196:2011)
- Anteil org. Substanz (Glühverlust V_{gl}) ≤ 5 M.-% (DIN 1054:2010)
- Bodengruppen nach DIN 18196: GU*, GT*, SU*, ST*, UL, UM, UA, TL, TM, TA bzw. GT SU u. ST (vgl. DIN 1054:2010)

Organische und organogene Böden

Böden mit organischen Beimengungen (nichtbindig) nach DIN 1054:2010

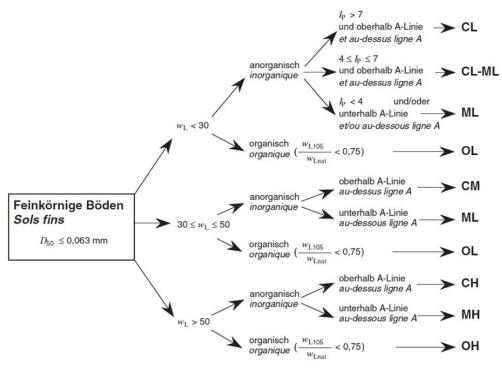
- Anteil org. Substanz (Glühverlust V_{ql}) > 3 M.-% (DIN 1054:2010)

Böden mit organischen Beimengungen (bindig) – Organogene Böden nach DIN 1054:2010

- Anteil org. Substanz (Glühverlust V_{gl}) > 5 M.-% (DIN 1054:2010)
- Bodengruppen nach DIN 18196: OU, OT, OH u. OK

Organische Böden

- Torfe und Schlamme nach DIN 18196
- Bodengruppen nach DIN 18196: HN, HZ, F


Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Klassifizierung von (organischen) Böden

Gruppensymbole für feinkörnige Böden nach Schweizer Norm SN 670 004-2b-NA (<u>NA der EN ISO 14688-2</u>) bzw. USCS (Unified Soil Classification System)

	Symbole für die Kennzeichnung der Bodenbestandteile										
	Symboles caractérisant les éléments du sol										
		standteile ts du sol		ŀ	Korngrössenverteilung <i>Granularité</i>			Plastizität <i>Plasticité</i>			
Symbole Symbole	English	Deutsch	Français	Symbole Symbole	English	Deutsch	Français	Symbole Symbole	English	Deutsch	Français
G	gravel	Kies	gravier	W	well- graded	gut ab- gestuft	bien gradué	L	low	niedrig	basse
S	sand	Sand	sable	Р	poorly- graded	schlecht ab- gestuft	mal gradué	М	medium	mittel	moyenne
M	silt	Silt	limon					Н	high	hoch	haute
С	clay	Ton	argile								
0	organic	or- ganisch	or- ganique								
Pt	peat	Torf	tourbe								

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Klassifizierung von (organischen) Böden

Bestimmung der organischen Anteilen mit Natronlauge nach Schweizer Norm SN 670370a:2008

Verfärbung der Natronlauge	Stufe	organisch
leicht gelbliche Tönung	1	nicht
hellgelb	2	leicht
gelb	3	mittel
braun	4	mittel-stark
dunkelbraun bis schwarz	5	stark

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Klassifizierung von (organischen) Böden

Bestimmung der Zersetzungsstufen und des Zersetzungsgrades von pedogen nicht veränderten Torfen nach DIN 19682-12:2007 ("Bodenbeschaffenheit – Felduntersuchungen – Teil 12: Bestimmung des Zersetzungsgrades der Torfe")

Zersetzungsstufe		Merkmale trockener und zersetzter Torfe ²⁾						
Kurz- zeichen	Bezeich- nung	Farbe des Torfes 3)	strukturierte Pflanzenreste im Torf	Kurzzeichen	Pflanzenstrukturen im Torf	beim Quetschen zwischen den Fingern hindurchgehend	Rückstand nach dem Quetschen	
z1	sehr	weißlich bis gelb		H1		farbloses, klares Wasser		
- 21	schwach	ziemlich hellbraun	einziger erkennbarer Torfbestandfeil	H 2	deutlich	schwach gelbbraunes, fast klares Wasser	nicht breiartig	
z2	schwach	dunkelbraun	Tombestandteil	Н3		braunes, deutlich trübes Wasser		
	600 800 000 000 000 000 000 000 000 000			H 4		braunes, stark trübes Wasser		
z3	mittel		nahezu einziger erkennbarer Torfbestandteil	Н 5		stark trübes, Wasser, daneben etwas Torfsubstanz	etwas breiartig	
		ziemlich	über 2/3 der Torfsubstanz	H 6 etwas undeutlich	bis 1/3 der Torfsubstanz	stark breiartig		
z4	stark	dunkelbraun bis schwarz	etwa 1/2 der Torfsubstanz	Н7	noch einigermaßen erkennbar	Etwa 1/2 der Torfsubstanz	Pflanzenstrukturen deutlicher a vorher	
24	Stark		etwa 1/3 der Torfsubstanz	Н8	sehr undeutlich	etwa 2/3 der Torfsubstanz	besonders aus	
z5	cohr ctork		nur sehr wenig der Torfsubstanz	Н 9	fast nicht mehr erkennbar	fast die gesamte Torfsubstanz	z. B. Fasern, Holz	
23	sehr stark		keine pflanzlichen Strukturen	H 10	nicht mehr erkennbar	die gesamte Torfsubstanz	kein Rückstand	

Zersetzungsstufe bzw. Zersetzungsgrad der Versuchstorfe T1, T2 und T3

Stufen analog zur VON POST'schen Skala (f
ür schwach zersetzte Torfe nicht vergleichbar mit der f
ünfstufigen Skala der DIN 19682-12:1997-04).

Nur gleichartige Torfe besitzen bei gleicher Zersetzung auch die gleiche Farbe. So sind Niedermoortorfe in der Regel dunkelbraun bis schwarz, Hochmoortorfe, besonders Cymbifolia-Torfe, oft mehr rötlichbraun, Cuspidata-Torfe eher gelblich- oder gelbbraun.

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Klassifizierung von (organischen) Böden

Humusstufen nach AD-HOC-Arbeitsgruppe Boden (2005) und entsprechende C_{org} -Wert

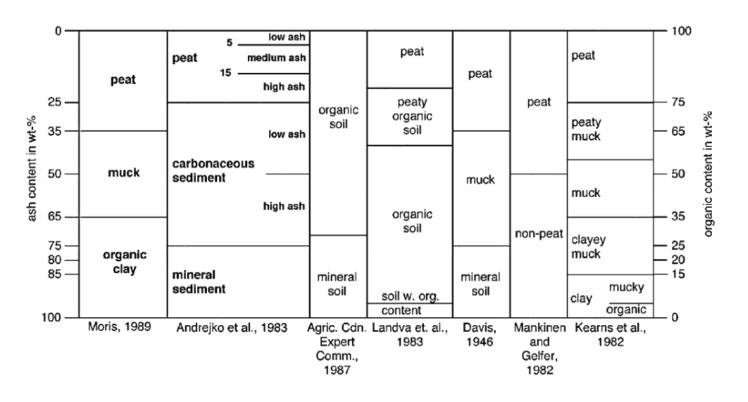
Stufe [Kurz- zeichen]	Gehalt organischer Substanz (Humus) [M%]	C _{org} [M%]	Bezeichnung
h0	0	-	humusfrei
h1	<1	<0,58 (Faktor: 1,724 [-])	sehr schwach humos
h2	1-2	0,58-1,16	schwach humos
h3	2-4	1,16-2,32	mittel humos
h4	4-8	2,32-4,64	stark humos
h5	8-15	4,64-8,69	sehr stark humos
h6	15-30	8,70-15,00 (Faktor: 2,0 [-])	extrem humos, anmoorig
h7	>30	>15,00	organisch, Torf

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Klassifizierung

Weitere Klassifizierungen nach ASTM

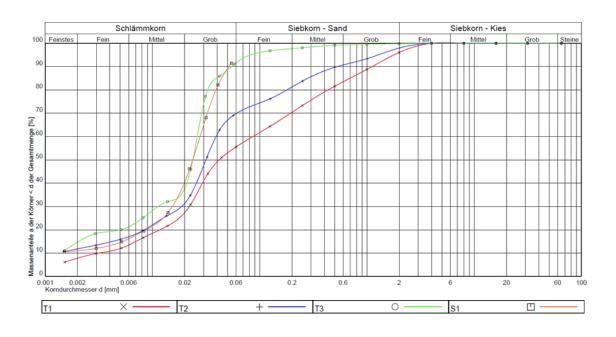
Kennung	Englischer Titel	Inhalt
D 1997:2013 (ASTM D 1997:2013)	Standard Test Method for Laboratory Determination of the Fiber Content of Peat Samples by Dry Mass	Bestimmung des Fasergehaltes von Torf durch Auswaschen mit einer Lösung aus Polyphosphaten
D 2944:2014 (ASTM D 2944:2014, 2014)	Standard Method of Sampling Processed Peat Materials	Entnahme von Torfproben
D 2974:2014 (ASTM D 2974:2014, 2014)	Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils	Bestimmung des Wassergehaltes durch Ofentrocknung und Bestimmung des Glühverlustes
D 2976:2015 (ASTM D 2976:2015, 2015)	Standard Test Method for pH of Peat Materials	Bestimmung des pH-Wertes mittels Messgerät
D 2980:2017 (ASTM D 2980:2017, 2017)	Standard Test Method for Saturated Density, Moisture- Holding Capacity, and Porosity of Saturated Peat Materials	Bestimmung der Wasseraufnahmefähigkeit und Porosität von Torfen
D 4427:2018 (ASTM D 4427:2018, 2018)	Standard Classification of Peat Samples by Laboratory Testing	Klassifikation von Torfen anhand ihrer Zusammensetzung
D 4531:2015 (ASTM D 4531:2015, 2015)	Standard Test Method for Bulk Density of Peat and Peat Products	Bestimmung der Rohdichte durch Abwiegen von Bohrkernen und durch Tauchwägung


Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Klassifizierung von (organischen) Böden

Weitere Klassifizierungen von Böden auf Grundlage des organischen Anteils (aus: (Wüst et al. (2001))

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

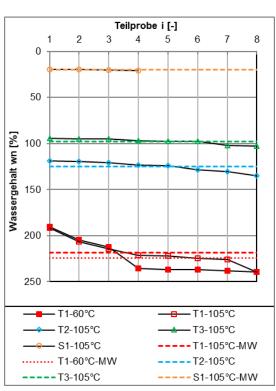


Bodenkennwerte der Versuchsböden

Kornverteilungskurven der **Versuchsböden Torf 1 bis 3 (T1-3) und Schluff (S1)** aus dem Rheinischen Braunkohlerevier

nach DIN EN ISO 17982-4

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

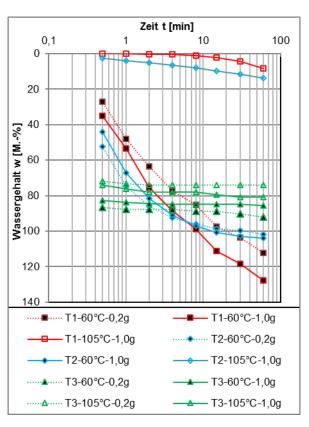


Bodenkennwerte der Versuchsböden

Natürliche Wassergehalte der Versuchsböden nach DIN EN ISO 17892-1:2015

Versuchs- reihe	Anzahl d. Versuche	Trocknungs- temperatur	natürlicher Wassergehalt	natürlicher Wasseranteil	natürlicher Feststoffanteil
	[n]	[°C]	W _n [M%]	W _{An} [M%]	[M%]
T1-60°C	8	60	224,46	69,18	30,82
V [%]	-	-	n.b.	2,77	n.b.
T1-105°C	8	105	218,30	68,58	31,42
V [%]	-	-	n.b.	2,11	n.b.
T2-105°C	8	105	125,15	55,56	44,44
V [%]	-	-	n.b.	2,03	n.b.
T3-105°C	8	105	97,69	49,40	50,59
V [%]	-	-	n.b.	1,56	n.b.
S1-105°C	4	105	20,16	16,77	83,23
V [%]	-	-	n.b.	2,53	n.b.

- geringe Variationskoeffizienten der Wasseranteile w_{An} von < 3%,
- geringfüge Abweichung durch die Trocknungstemperatur

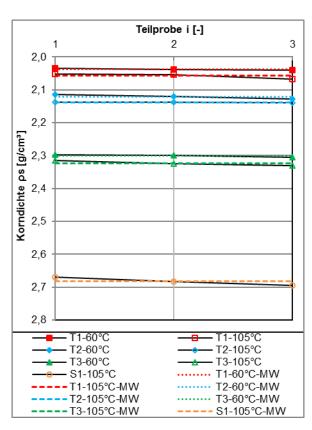

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Bodenkennwerte der Versuchsböden

Wasseraufnahmen der Versuchsböden DIN 18132:2012

deutlich geringere Wasseraufnahme der Versuchstorfe T1 und T2 nach Trocknung bei 105° C

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann



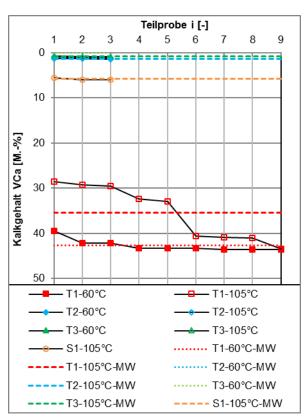
Bodenkennwerte der Versuchsböden

Korndichten der Versuchsböden nach DIN 18124:2011

Versuchs- reihe	Anzahl d. Versuche [i]	Trocknungs- temperatur [°C]	Kornrohdichte [g/cm³]
T1-60°C	3	60	2,038
V [%]	-	-	0,12
T1-105°C	3	105	2,057
V [%]	-	-	0,43
T2-60°C	3	60	2,121
V [%]	-	-	0,31
T2-105°C	3	105	2,139
V [%]	-	-	0,06
T3-60°C	3	60	2,300
V [%]	-	-	0,18
T3-105°C	3	105	2,324
V [%]	-	-	0,35
S1-105°C	3	105	2,682
V [%]	-	-	0,47

- mit steigendem Gehalt an Organik Abnahme der Korndichte,
- geringfüge Abweichung durch die Trocknungstemperatur

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann



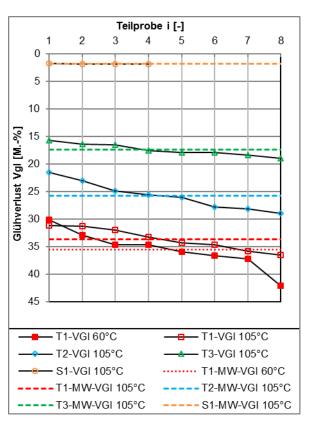
Bodenkennwerte der Versuchsböden

Kalkgehalte der Versuchsböden nach DIN 18129:2011

Versuchsr eihe	Anzahl d. Versuche	Trocknungs- temperatur	Kalkgehalt V _{Ca} (CaCO ₃)
	[i]	[°C]	[M%]
T1-60°C	9	60	42,71
V [%]	-	-	3,16
T1-105°C	9	105	35,41
V [%]	-	-	16,93
T2-60°C	3	60	1,09
V [%]	-	-	13,70
T2-105°C	3	105	1,36
V [%]	-	-	7,47
T3-105°C	3	105	0,82
V [%]	-	-	10,34
S1-105°C	3	105	5,84
V [%]	-	-	3,47

 deutliche Abweichung des Kalkgehaltes bei 105° C Trocknungstemperatur

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann


Bodenkennwerte der Versuchsböden

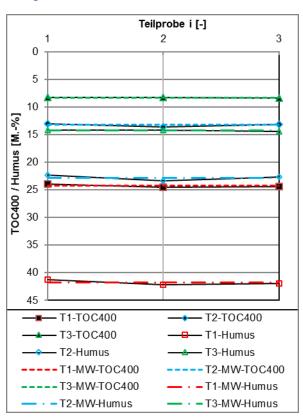
Glühverluste der Versuchsböden nach DIN 18128:2002

Versuchr eihen	Anzahl d. Versuche	Trocknung s- temperatur	Glühverlust Vgl	Feststoff- anteil ¹	Feststoff- anteil mineralisch ¹	Feststoff- anteil organisch ¹
[Bez.]	[i]	[°C]	[M%]	[M%]	[M%]	[M%]
T1	8	60	35,54	30,92	19,93	10,99
V [%]	-	-	9,81	-	-	-
T1	8	105	33,63	31,42	20,85	10,57
V [%]	-	-	6,01	-	-	-
T2	8	105	25,74	44,44	33,01	11,43
V [%]	-	-	9,97	-	-	-
T3	8	105	17,46	50,59	41,76	8,83
V [%]			6,27			
S1	4	105	1,87	83,23	81,67	1,56
V [%]	-	-	5,26	-	-	-

¹ Feststoffanteil auf Basis der Wasseranteile, Feststoffanteile mineralisch/organisch unter der Annahme, dass der Glühverlust ausschließlich organische Anteile anzeigt.

 Abweichung des Glühverlustes durch die Trocknungstemperatur, Variationskoeffizienten von bis zu 10 % (Probeneinwaage von 100 bis 300 g je Versuch)

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann



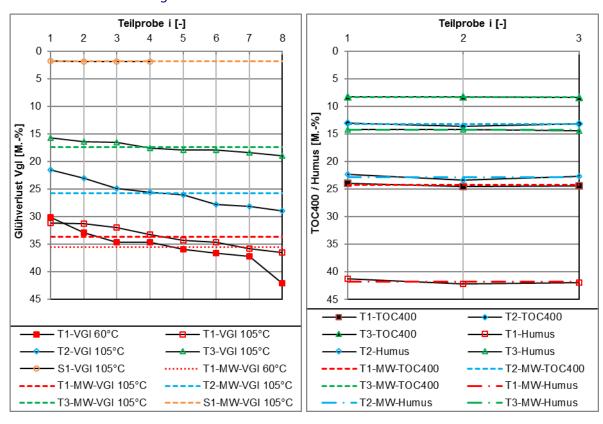
Bodenkennwerte der Versuchsböden

Organischer Kohlenstoff-Gehalt der Versuchsböden C_{org} nach DIN 19539:2016

Versuchs - reihe	Anzahl d. Versuche	Trocknung s- temperatur	TOC ₄₀₀ bzw. C _{org}	Humus (TOC ₄₀₀
[Bez.]	[i]	[°C]	[M%]	1,72) [M%]
T1	3	105	24,30	41,80
V [%]	-	-	1,09	1,09
T2	3	105	13,27	22,82
V [%]	-	-	2,30	2,30
T3	3	105	8,31	14,30
V [%]			0,91	0,91
S1	3	105	<0,10	-
V [%]	-	-	-	-

 geringe Variationskoeffizienten von < 2 % des C_{org} (vermutlich auf die gute Homogenisierung des Probenmaterials zurückzuführen, Probeneinwaage von etwa 0,1 g je Versuch)

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

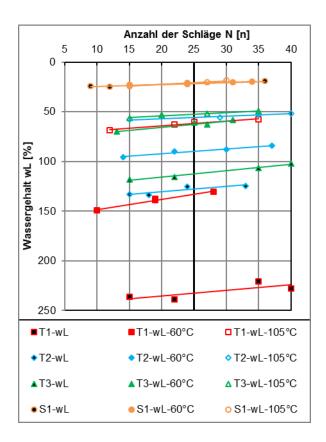


Bodenkennwerte der Versuchsböden

Vergleich V_{gl} zu Humus

Versuchsreihe	rel. Differenz rel. ∆		
[Bez.]	[%]		
T1			
V _{GL} zu Humus	-19,54		
Humus zu V _{GL}	24,28		
T2			
V _{GL} zu Humus	12,81		
Humus zu V _{GL}	-11,35		
T3			
V _{GL} zu Humus	22,11		
Humus zu V _{GL}	-18,10		

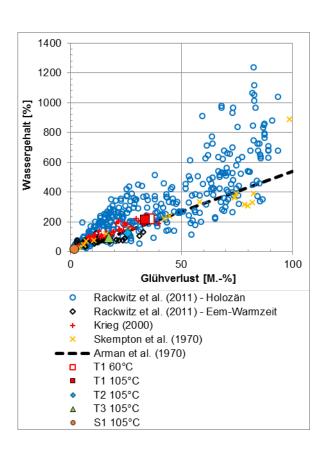
 deutliche Abweichungen von Glühverlust zu Humus

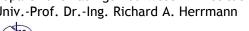

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Bodenkennwerte der Versuchsböden

Fließgrenzen der Versuchsböden nach 18122-1:1997 und <u>nach Trocknung bei 60 bzw. 105 °C</u>

- die Beeinflussung der Fließgrenze durch die Trocknungstemperatur steigt mit dem Anteil der im Boden enthaltenen Organik
- ähnliche Fließgrenzen der Versuchstorfe nach Trocknung bei 105° C

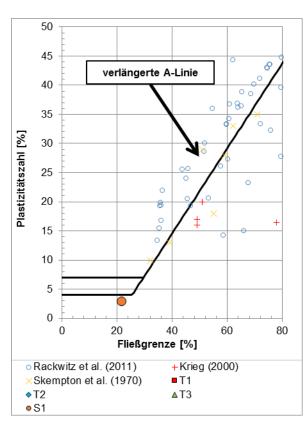

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

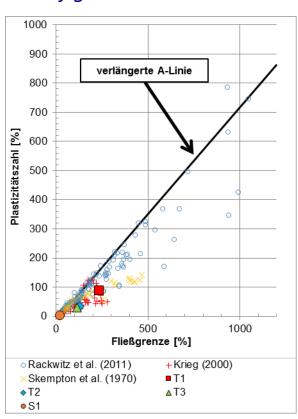

Korrelationen

Glühverlust - Wassergehalt

- Anstieg des Wassergehaltes mit dem Glühverlust
- die Versuchsböden zeigen eine gute Übereinstimmung mit der Linearisierung von Arman et al. (1970)

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann



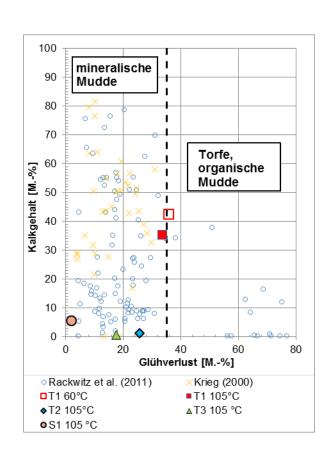


Korrelationen

Fließgrenze - Plastizitätszahl

Versuchstorfe lassen sich nur im Plastizitätsdiagram mit verlängerter A-Linie abbilden

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann



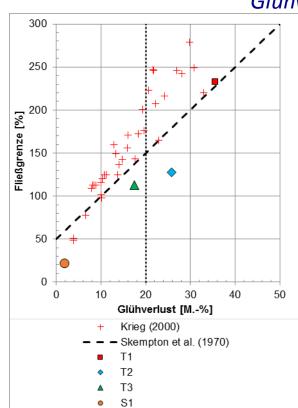
Korrelationen

Glühverlust - Kalkgehalt

- die Versuchstorfe T2 und T3 lassen sich nach Rackwitz et al. (2011) als mineralische Mudden mit Glühverlusten V_{gl}< 35 M.-% klassifizieren,
- der T1 liegt im Übergang zu den Torfen mit V_{gl}~ 35 M. %.

Mineralische Mudde $5 \le V_{gl} \le 35 \%$ $2,75 >= \rho_s > = 2,00 \text{ g/cm}^3$		Organische Mudde und Torf $35 < V_{gl} \le 100 \%$ $2,00 > \rho_s >= 1,40 \text{ g/cm}^3$			
Mudde, Sand-, Schluff-, Tonmudde	Kalkmudde	Detritus-, Lebermudde	Torfmudde	Faseriger Torf, zersetzter Torf	
C _c = 0,5 2,5	C _c = 0,5 1,5	C _c = 1,5 8			
$C_{\alpha} = 0.02 \dots 0.15$		$C_{\alpha} = 0.15 \dots 0.50$		$C_{\alpha} = 0.15 \dots 0.70 [7]$	
$C_{\alpha}/C_{c} = 0.03 \dots 0.08$	$C_{\alpha}/C_{c} = 0.05 \dots 0.07$	$C_{\alpha}/C_{c} = 0.03 \dots 0.10$			
Effektiver Reibungswink	el φ' = 28° 52° (konsolid	ierte, undrainierte Triaxi	alversuche)		
Effektiver Reibungswink	tel φ' = 25° 35° (Rahmen	- und Kreisringschervers	uche)		

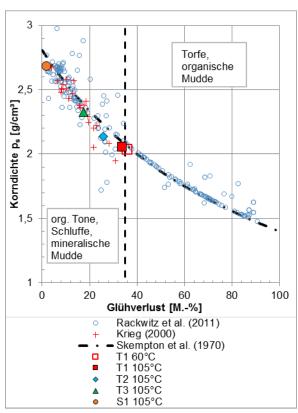
Undrainierte Kohäsion $c_{u,0} = 1 \dots 7 \text{ kN/m}^2 \text{ und } c_{u,i} = c_{u,0} + (0,3 \dots 0,5) \cdot \sigma'_{v,i}$


Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Korrelationen

Glühverlust – Fließgrenze / Glühverlust - Korndichte

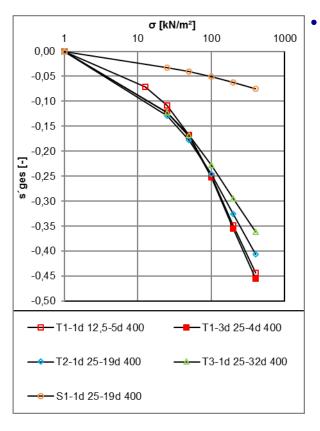
- nach Skempton et al. (1970) besteht zwischen Glühverlust und Fließgrenze ein linearer Zusammenhang,
- im Bereich von 20 % < V_{gl} < 80 % soll dieser lineare Zusammenhang nach Skempton et al.(1970) Ergebnisse liefern, die im Genauigkeitsbereich von \pm 20 % liegen,
- wie zu erkennen ist, liegen die Versuchsergebnisse von Krieg (2000) jedoch zum Teil deutlich außerhalb dieses linearen Zusammenhangs, wobei die größten Abweichungen etwa zwischen 80 und 90 % liegen,
- die mittleren Werte des T1 hingegen zeigen gute Übereinstimmungen, der von Skempton et al. (1970) beschriebene lineare Zusammenhang lässt sich somit nicht bestätigen. Es lässt sich anhand der Versuchsergebnisse allerdings erkennen, dass ein Zusammenhang zwischen Glühverlust und Fließgrenze vorhanden ist: Mit steigendem Glühverlust steigt auch die Fließgrenze an.

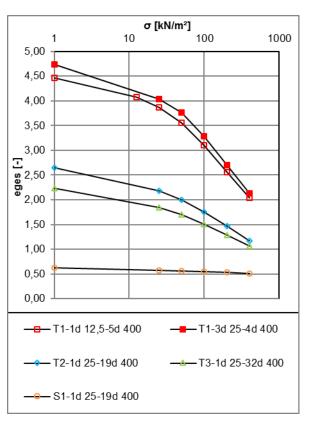

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Korrelationen

Glühverlust – Fließgrenze / Glühverlust - Korndichte

- Grundsätzlich lässt sich anhand der Versuchsergebnisse ein Zusammenhang zwischen Glühverlust und Korndichte erkennen: Mit steigendem Glühverlust nimmt die Korndichte ab.
- Insbesondere bei niedrigen Glühverlusten bestehen zwischen der Korrelation nach Skempton et al. (1970) und den Versuchsergebnissen zum Teil sehr hohe Abweichungen von bis zu ca. 0,6 g/cm³.
- Hingegen zeigen die mittleren Werte der Versuchsböden einen dem Korrelationsgraph entsprechenden Verlauf.

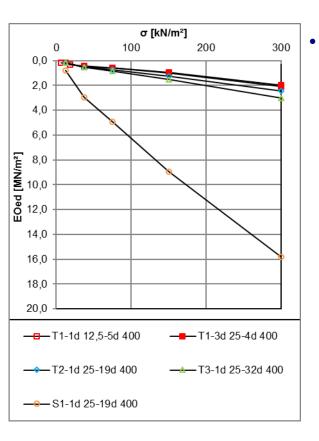

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

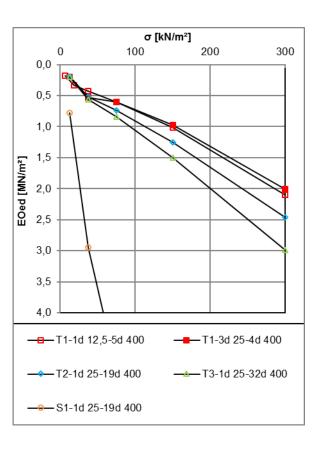


Kompressionsversuche an den Versuchsböden

Spannungs-Setzung-Linien / Spannungs-Porenzahl-Linien

bez. Setzungen s´von > 35
bis 45 % der Versuchstorfe mit
Spannungen in der
Endlaststufe von σ=400 kN/m²
bei Anfangsporenzahlen e von
> 4,5 bis 2,2 [-]


Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann



Kompressionsversuche an den Versuchsböden

Spannungs-Steifemodul-Linien

sehr niedrige Steifemodule E_{oed} der Versuchstorfe von ≤ 3 MN/m^2

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Zusammenhang zwischen organischen Bestandteile und Setzungen **Finflussfaktoren**

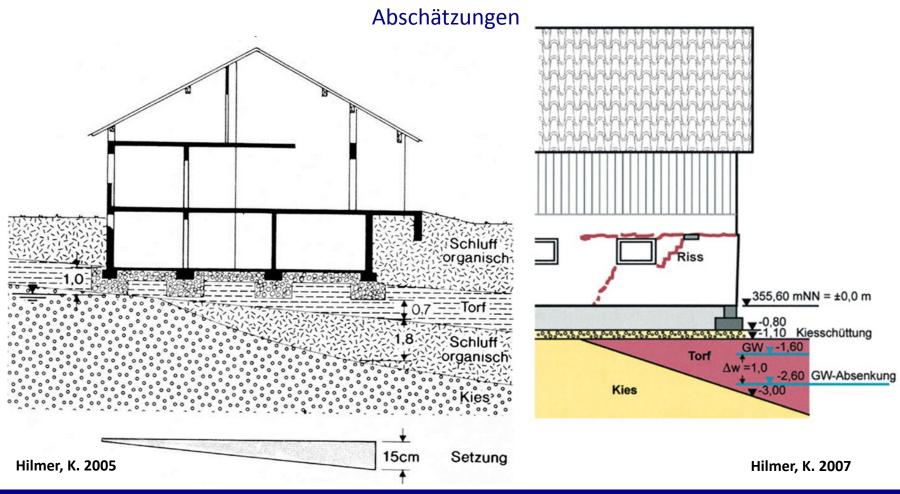
Folgende Faktoren beeinflussen indirekt oder direkt das Verhalten der organischen Böden oder Böden mit organischen Bestandteilen (Auszug):

- Art der Aufschlüsse / Probenentnahme
- 2. Nicht eindeutige Lage der Untersuchungs- bzw. Ansatzpunkte
- 3. Differenzen in der Bodenansprache
- 4. Umfang der bodenmechanischen Laborversuchen
- Einflüsse aus Grundwasserabsenkungen (Wegfall Auftrieb/Ausspülung...)
- 6. Zusammendrückung/Stauchung der Proben / des Untergrundes (Torf)

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Zusammenhang zwischen organischen Bestandteile und Setzungen **Finflussfaktoren**

Folgende Faktoren beeinflussen indirekt oder direkt das Verhalten der organischen Böden oder Böden mit organischen Bestandteilen (Auszug):


- 7. Bebauung differierende Nutzung über den Betrachtungszeitraum
- Topographie
- Klimatische Einflüsse (Starkregen, Trockenperioden)
- 10. Vegetation (z.B. Wurzeln)
- 11. Bodenklima
- 12. Bindige Böden oder Anteile und deren Konsistenzen
- 13. Anteil organischer Bestandteile

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Zusammenhang organische Bestandteile und Setzungen

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Quellen - Auszug

Bayerische Landesanstalt für Landwirtschaft, Humus: Leben aus dem Boden, LfLMerkblatt, März 2011

Bund-Länder-Arbeitsgemeinschaft Bodenschutz, LABO, Hintergrundwerte für anorganische und organische Stoffe in Böden,3. überarbeitete und ergänzte Auflage, 2003 u.a.

DIN 1054: 2010-12: Baugrund – Sicherheitsnachweise im Erd und Grundbau – Ergänzende Regelungen zu DIN EN 1997-1; Ausgabe: 2010; Berlin (Beuth)

DIN ISO 10694:1996-08: Bodenbeschaffenheit – Bestimmung von organischem Kohlenstoff und Gesamtkohlenstoff nach trockener Verbrennung; Berlin (Beuth)

DIN 19682-12:2007-11:Bodenbeschaffenheit -Felduntersuchungen -Teil 12: Bestimmung des Zersetzungsgrades der Torfe, Ausgabe 2007, Berlin: Beuth

DIN 18121-1: 1998-04: Untersuchung von Bodenproben - Wassergehalt - Teil 1: Bestimmung durch Ofentrocknung; Ausgabe: 1998; Berlin (Beuth)

DIN 18122-1: 1997-07: Baugrund, Untersuchungen von Bodenproben – Zustandsgrenzen – Teil 1: Bestimmung der Fließ- und Ausrollgrenze; Ausgabe 1997; Berlin (Beuth)

DIN 18128: 2002-12: Baugrund; Untersuchung von Bodenproben - Bestimmung des Glühverlustes, Ausgabe: 2002; Berlin (Beuth)

DIN 18135:2012-04:Baugrund - Untersuchung von Bodenproben - Eindimensionaler Kompressionsversuch; Ausgabe: 2012; Berlin (Beuth)

DIN 18196: 2011-05: Erd- und Grundbau – Bodenklassifikation für bautechnische Zwecke; Berlin (Beuth)

DIN EN ISO 14688-2: 2011-06: Geotechnische Erkundung und Untersuchung – Benennung, Beschreibung und Klassifizierung von Boden – Teil 2: Grundlagen für

Bodenklassifizierungen (ISO 14688-2:2004); Deutsche Fassung EN ISO 14688-2:2004; Ausgabe 2011; Berlin (Beuth)

Herrmann, R.A.; Löwen. M.: Leitfaden "Probenentnahme, Bodenansprache und Laboruntersuchungen bei Böden mit organischen Bestandteilen"; Siegen 2011

Herrmann, R.A.; Löwen. M.: Querschnittsstudie "Bestimmung des organischen Anteils in feinkörnigen Böden"; Siegen 2012

Herrmann, R.A.; Löwen. M.: Untersuchungen zum Setzungsverhalten von feinkörnigen Böden mit organischen Bestandteilen und zur Klassifizierung von feinkörnigen Böden mit organischen Bestandteilen; Siegen 2013

Höper, H.: Freisetzung von Treibhausgasen aus deutschen Mooren, DGMT e.V. TELMA 37, Hannover: 2007, S.85-116..

Hilmer, Klaus; Knappe, Manfred: Bauschadensfälle, Band 7, Günter Zimmermann und Ralf Schuhmacher (Hrsg.), Stuttgart: Fraunhofer IRB Verlag, 2005

Hilmer, Klaus: Bauschäden im Hoch- und Tiefbau. Band 1: Tiefbau. Standardwerk zur Schadenserkennung und Schadensvermeidung, Institut für Bauforschung, Victor Rizkallah

(Hrsg.), Stuttgart: Fraunhofer IRB Verlag, 2007

Kany, Manfred: Baugrundaufschlüsse, Zirndorf 1997, S. 129

Krieg, Stefan: Viskoses Bodenverhalten von Mudden, Seeton und Klei, Karlsruhe 2000

Pietsch, M.; Schneider A. (1982): Zur Frage der Bestimmung organischer Bestandteile in Böden; Organic matter Determination for Soils; Fachzeitschrift für Geotechnik Nr. 2, S. 67-73

Ratering, S. et al.: Zusammenfassender Bericht der Untersuchungen zum mikrobiellen Abbau von organischen Substanzen im Boden

Rackwitz et al: Bodenmechanische Eigenschaften organischer Ablagerungen der brandenburgischen Niederungs- und Luchgebiete, Geotechnik 34, Berlin: Ernst und Sohn, 2011, S. 97-101.

Schultze, E. & Muhs, H.: Bodenuntersuchungen für Ingenieurbauten; 1967 Springer-Verlag, Berlin, Heidelberg, New York

Schneider: Bautabellen für Ingenieure mit Berechnungshinweisen und Beispielen; Herausgegeben von Alfons Goris; 20. Auflage 2012; Werner Verlag

Simmer, K.: Grundbau 1, Springer Verlag, 8. Auflage, 2013

SN 670 004-2b-NA: 2008.06; EN ISO 14688-2:2004: Geotechnische Erkundung und Untersuchung Benennung, Beschreibung und Klassifizierung von Boden -Teil 2: Grundlagen von Bodenklassifizierung; Schweizerischer Verband der Strassen- und Verkehrsfachleute VSS (Zürich)

Taylor, J. A.: The peatlands of Great Britain and Ireland, Mires: swamps, bog, fen and moor - regional studies. Amsterdam, Elsevier:1983.

Department Bauingenieurwesen – Institut für Geotechnik Univ.-Prof. Dr.-Ing. Richard A. Herrmann

Vielen Dank für Ihre Aufmerksamkeit!

5. Bergschadensforum 2018

Das Schwindverhalten bindiger Böden und seine bautechnische Bedeutung – Neue Erkenntnisse

Prof. Dr.-Ing. Dietmar Placzek, ELE

Dipl.- Ing. Ulrich Estermann, ELE

- 1. Einleitung
- 2. Mögliche Ursachen für die bei einer Grundwasserabsenkung eintretenden Geländesenkungen
- Schwindverhalten
 - 3.1 Theoretische Grundlagen
 - 3.2 Schwindverhalten unter verschiedenen Randbedingungen
 - 3.3 Neuere Modellversuche zum Schwindverhalten bindiger Böden
 - 3.4 Ergebnisse Versuch 1
 - 3.5 Ergebnisse Versuch 2
- 4. Zusammenfassung

1. Einleitung

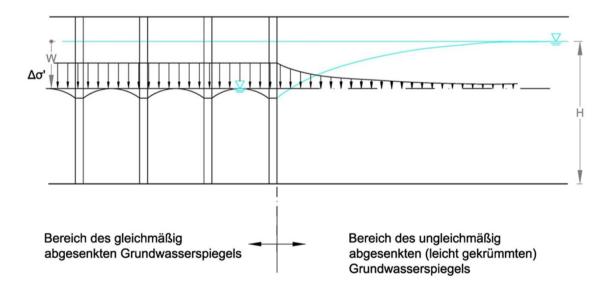
Die Frage nach den Ursachen für Geländesenkungen ist von entscheidender bautechnischer und wirtschaftlicher Bedeutung.

Durch Geländesenkungen können unter bestimmten Randbedingungen Bauwerksschäden, aber auch Änderungen der Topographie, der Infrastruktur, der Vorflutverhältnisse u.v.a.m. verursacht werden.

Geländesenkungen sind Verformungen an der Geländeoberfläche, ausgelöst durch Einwirkungen aus dem Baugrund (z. B. untertägiger Bergbau, Tunnelbau, natürliche oder künstliche Grundwasserspiegelabsenkung usw.).

Unter Setzungen versteht man dagegen Verformungen (Zusammendrückungen der einzelnen Schichten) des Baugrundes durch direkte Einwirkungen an oder in Nähe der Geländeoberfläche (z. B. durch Bauwerke, Aufschüttungen, Halden usw.).

Im Folgenden wird auf Geländesenkungen infolge Grundwasserabsenkung näher eingegangen.

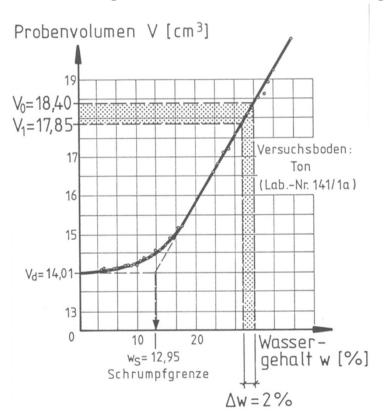


Absenkung Grundwasserspiegel

2. Mögliche Ursachen für die bei einer Grundwasserabsenkung eintretenden Geländesenkungen

Mögliche Auswirkungen durch eine Grundwasserabsenkung können sein:

Änderungen des Grundwasserspiegels (natürlich oder künstlich bedingt)



Zunahme der wirksamen Spannungen um den Betrag $\Delta \sigma := \Delta u \approx w \cdot \gamma w$

2. Mögliche Ursachen für die bei einer Grundwasserabsenkung eintretenden Geländesenkungen

Trocknung (Schwinden) von bindigen Böden

Trocknungsversuch im Labor (Schrumpfversuch DIN 18122-2)

Wassergehaltsänderung durch Trocknung

$$\Delta W = 2 \%$$

$$\Delta V' = \Delta V / Vo = 3 \%$$

Der Volumenverlust ΔV , kann unter bestimmten Voraussetzungen unter Berücksichtigung der Schichtmächtigkeit auf die Örtlichkeit übertragen werden.

Weitere Ursachen

2. Mögliche Ursachen für die bei einer Grundwasserabsenkung eintretenden Geländesenkungen

Weitere mögliche Ursachen:

Chemische Zersetzung des Bodens (i.A. erst ab Temperaturen ≥ 85° C) oder Biologische Zersetzung (in Abhängigkeit von Randbedingungen wie Mikroorganismen, Kohlenstoff-Nährstoff-Verhältnis und Feuchte bei Temperaturen von 0 bis 85°C).

Eine Wassergehaltsreduzierung kann auch durch sich in größerer Tiefe entwickelnde Wurzeln einer vorhandenen Bepflanzung erfolgen und Senkungen an der Geländeoberfläche verursachen.

Grundsätzlich ist auch eine Überlagerung mehrerer Ursachen und damit ein anteiliger Einfluss auf eintretende Geländesenkungen möglich.

3.1 Theoretische Grundlagen

3. Schwindverhalten bindiger Böden

Begriffsdefinition:

Unter dem Begriff "Schwinden" versteht man in den Ingenieurwissenschaften eine Volumenabnahme durch Trocknung .

Als "Schrumpfen" bezeichnet man dagegen den Vorgang des sich Zusammenziehens, des Wenigerwerdens, des Abnehmens, jedoch ohne unmittelbaren Bezug zur Trocknung.

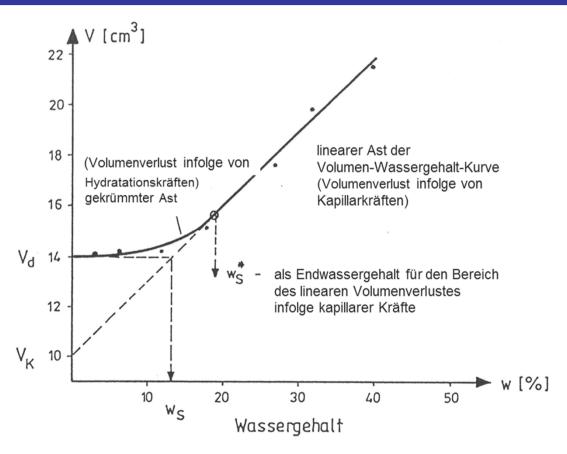
In der Bodenmechanik wird zunächst ausschließlich von "Schwinden" gesprochen (z.B. 1911 Atterberg und 1925 Terzaghi), erst später wurde auch der Begriff "Schrumpfen" verwendet.

3.1 Theoretische Grundlagen

3. Schwindverhalten bindiger Böden

Physikalische Voraussetzungen für das Schwinden:

- 1. Verdunstung des Porenwassers an der Schichtgrenze des bindigen Bodens
- 2. Verdunstung nur möglich, wenn die relative Feuchte der angrenzenden Porenluft bzw. Umgebungsluft kleiner als 1 ist

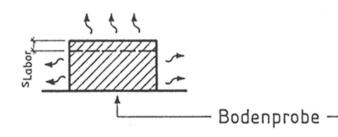

Es entsteht eine Feuchtebewegung aus dem bindigen Boden zur Verdunstungsoberfläche, beschreibbar durch:

- Kapillarwasserbewegung (im wassergesättigten Boden; 2-Phasen-System)
- Kapillarwasserbewegung und Wasserdampfdiffusion (im teilgesättigten, feuchten Boden; 3-Phasen-System)
- Wasserdampfdiffusion (im relativ trockenen Boden; 2-Phasen-System)

3.1 Theoretische Grundlagen

3. Schwindverhalten bindiger Böden

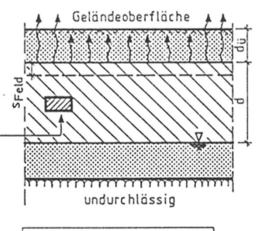
Vereinfachte Darstellung des Trocknungsverlaufes mit Kapillarwassertransport und Wasserdampfdiffusion anhand des Schrumpfversuches im Labor



3.2 Schwindverhalten unter Umgebungsbedingungen

3. Schwindverhalten bindiger Böden

Randbedingungen beim Schrumpfversuch im Labor:


- freie Probenoberfläche
- -Umgebungsluft allseitig
- -Verdunstungsfläche = Probenoberfläche

 $s_{Labor} = f(\Delta w_{Labor})$

Randbedingungen beim Schwindvorgang in der Örtlichkeit :

- freie oder bedeckte Schichtoberfläche
- Umgebungsluft einseitig
- Verdunstungsfläche = Schichtoberfläche

Deckschicht

bindige, schwindfähige Bodenschicht

Basisschicht

(2- bzw. 3-Schichten-System)

$$s_{Feld} = f (\Delta w_{Feld})$$

3.2 Schwindverhalten unter Umgebungsbedingungen

3. Schwindverhalten bindiger Böden

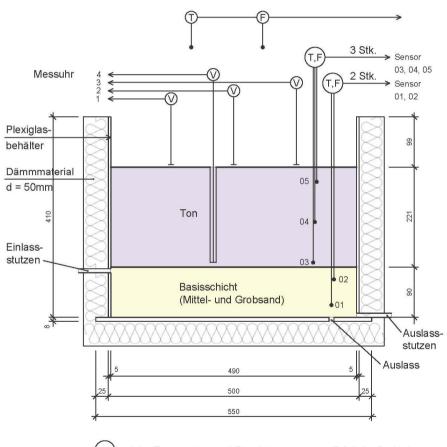
Beim einem Schrumpfversuch im Labor können nicht die tatsächlichen Umgebungsrandbedingungen berücksichtigt werden. Daher kann das Versuchsergebnis nur bedingt auf die Örtlichkeit unter Berücksichtigung der Schichtmächtigkeit eines bindigen Bodens übertragen werden.

Der Schrumpfversuch führt daher regelmäßig zu einer Überschätzung der möglichen Senkungen.

Für eine genauere Einschätzung des möglichen Schwindverhalten eines bindigen Bodens sind daher die Umgebungsrandbedingungen zu berücksichtigen.

3.2 Schwindverhalten unter Umgebungsbedingungen

3. Schwindverhalten bindiger Böden


Zu unterscheiden ist das Schwindverhalten:

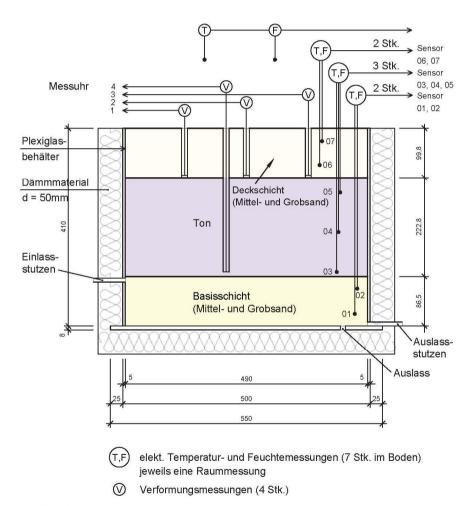
- Bei einer freien, unbedeckten Schichtoberfläche,
- Bei einer bedeckten Oberfläche (2-Schichten-System) und
- Bei einem zwischen einer Deckschicht und einer Basisschicht eingelagerten bindigen Boden (3-Schichten-System). Bei diesem System ist zudem ein Einstau der Basisschicht bis zum Kontaktbereich mit der bindigen Schichtunterfläche mit und ohne Grundwasser möglich.

Die Ergebnisse der nachfolgend beschriebenen, neuen Modellversuche belegen, dass nur unter besonderen Randbedingungen bei einer Grundwasserabsenkung Geländeverformungen infolge des Schwindens bindiger (toniger) Böden möglich sind.

3. Schwindverhalten bindiger Böden

(T,F)	elekt. Temperatur- und Feuchtemessungen (5 Stk. im Boden)
$\overline{}$	jeweils eine Raummessung

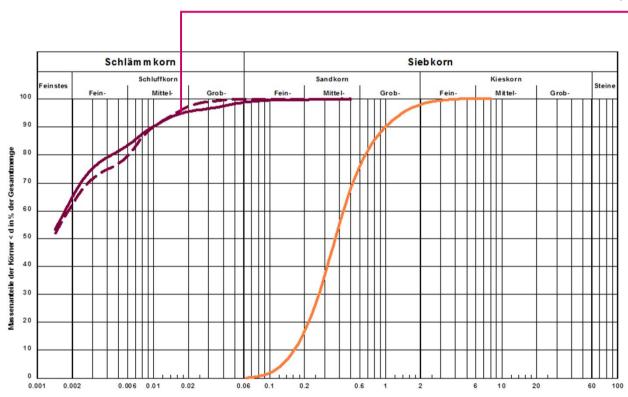
Verformungsmessungen (4 Stk.)


Maße in mm

Wassergehalt	Verformungen			Lage
Sensor 5	blau	rosa	grün	
Sensor 4				Ton
Sensor 3	orange		9	
Sensor 2				Basis-
Sensor 1				Sandschicht

Versuch 1 (ohne Deckschicht)
2-Schichten-System
Schematischer Versuchsaufbau

3. Schwindverhalten bindiger Böden


Wassergehalt	Verformungen		Lage
Sensor 7			Deck-
Sensor 6			Sandschicht
Sensor 5	blau rosa gr	ün	
Sensor 4			Ton
Sensor 3	orange		
Sensor 2			Basis-
Sensor 1			Sandschicht

Versuch 2 (mit Deckschicht)
3-Schichten-System
Schematischer Versuchsaufbau

3. Schwindverhalten bindiger Böden

Ton, stark schluffig, sehr schwach feinsandig

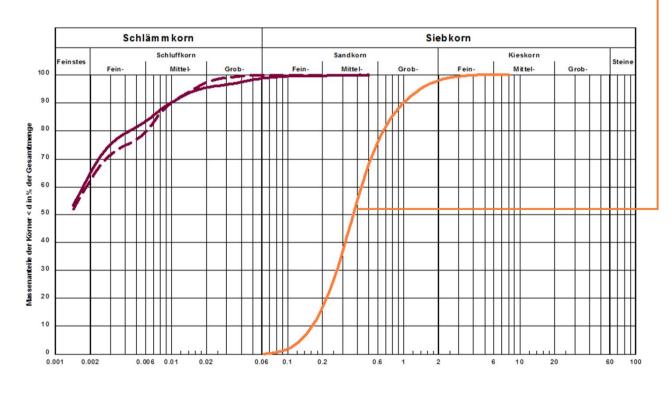
TA nach DIN 18196

Fließgrenze w₁: 59,7–62,9 %

Ausrollgrenze w_p: 22,4%

Schrumpfgrenze w_s: 19,8 -20,0

Proctordichte ρ_{Pr} : 1,57 – 1,60 g/cm³


Einbauwassergehalt : 23,0 – 26,4 %

Einbaudichte ρ_D : 1,55 g/cm³

Schichthöhe: 22,1 bzw. 22,3 cm

3. Schwindverhalten bindiger Böden

Mittelsand, grobsandig

SE nach DIN 18169

Einbauwassergehalt: 4 – 6 %

Basisschicht:

Einbaudichte ρ_D : 1,65 – 1,69 g/cm³

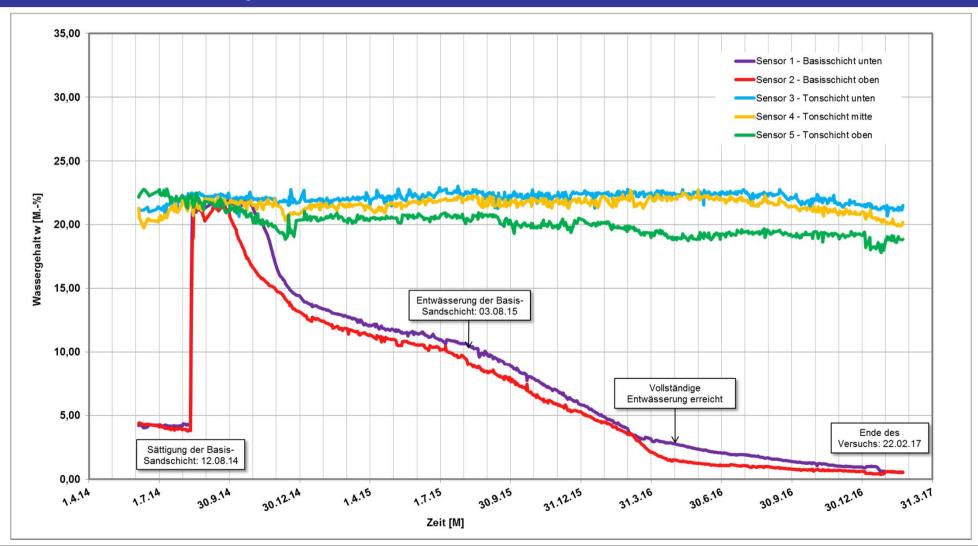
Schichthöhe: 8,65 – 9,0 cm

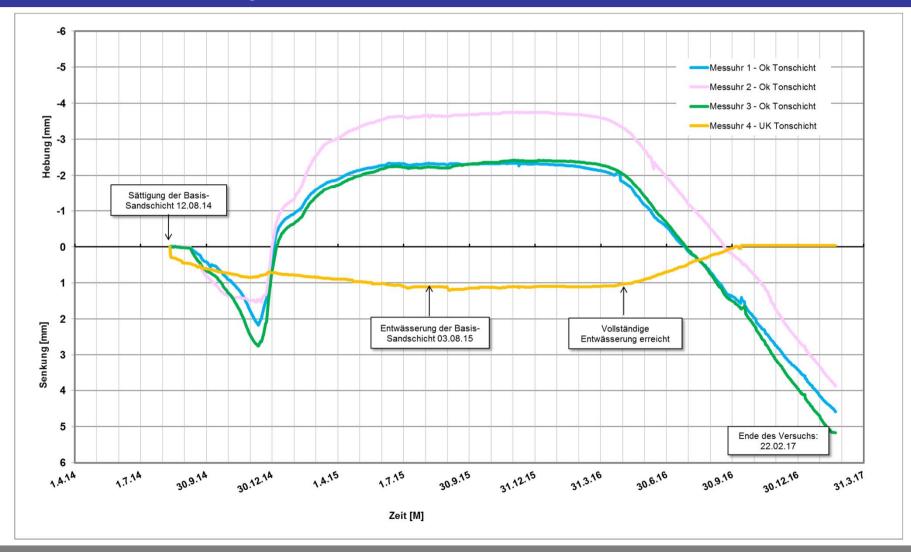
Deckschicht:

Einbaudichte ρ_D : 1,52 g/cm³

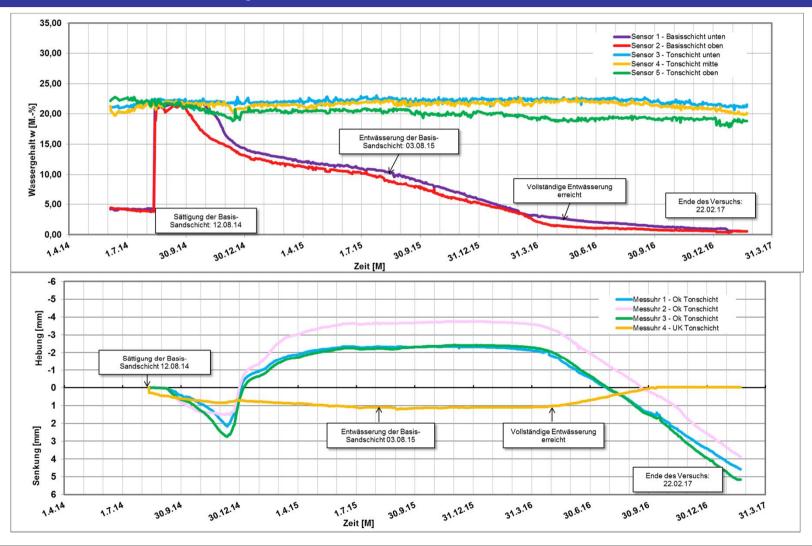
Schichthöhe: 9,88 cm

Versuch 1 (ohne Deckschicht)						
Aufbau Versuchsstand	Anfang Juni 2014	Beginn Messungen der Wassergehaltsänderungen				
Sättigung Basis-Sandschicht	12.08.2014	Beginn Verformungsmessungen				
Entwässerung Basis-Sandschicht	03.08.2015	Fortsetzung aller Messungen				
Ausbau Versuchsstand	22.02.1017	Abschluss der Messungen				
Versuch 2 (mit Deckschicht)						
Aufbau Versuchsstand	Anfang April 2014	Beginn Messungen der Wassergehaltsänderungen				
Sättigung Basis-Sandschicht	08.09.2014	Beginn Verformungsmessungen				
Beginn Bewässerung der Deck- Sandschicht	16.12.2014	Fortsetzung der Messungen				
Entwässerung Basis-Sandschicht	03.08.2015	Fortsetzung aller Messungen				
Ende Bewässerung Deckschicht	08.12.2015	Fortsetzung der Messungen				
Ausbau Versuchsstand	22.02.2017	Abschluss der Messungen				



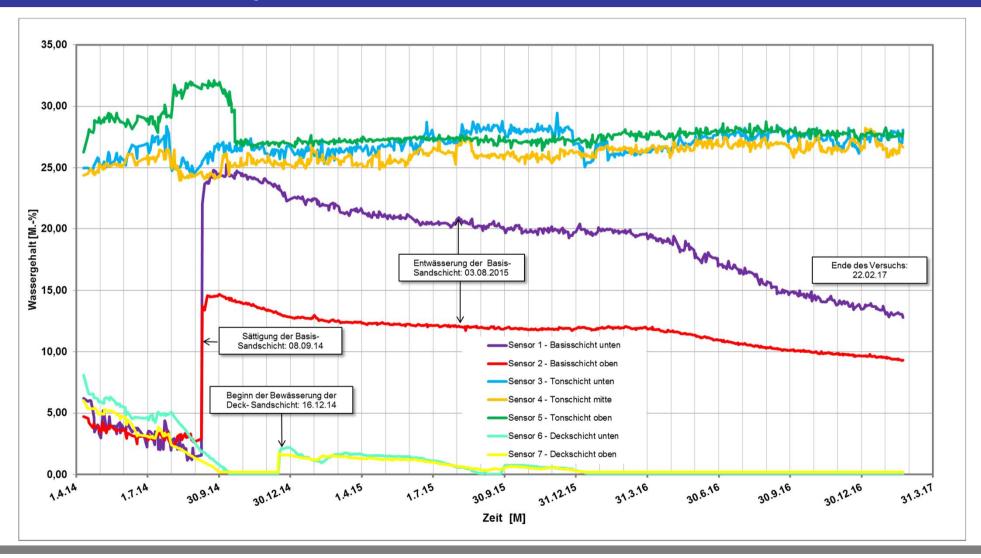


3.4 Ergebnisse Versuch 1 - Wassergehaltsänderungen

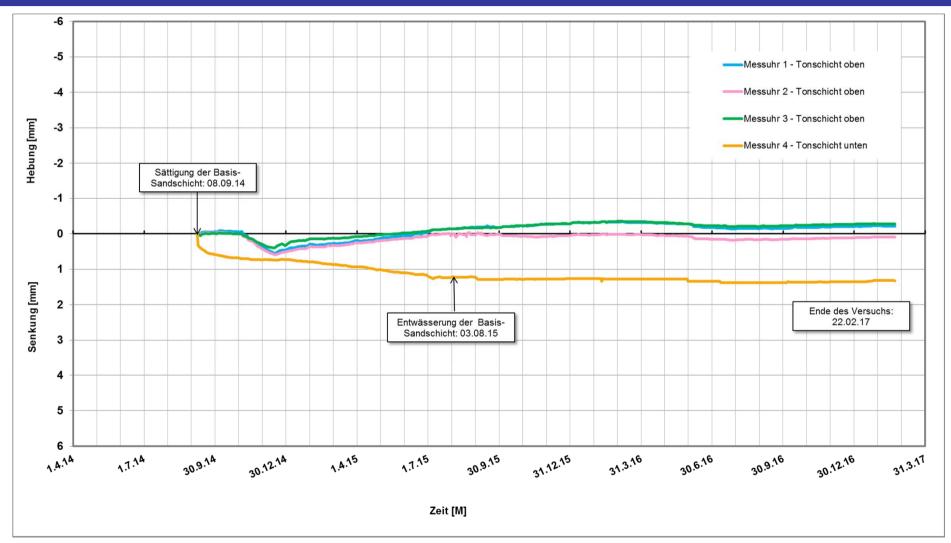


3.4 Ergebnisse Versuch 1 - Verformungen

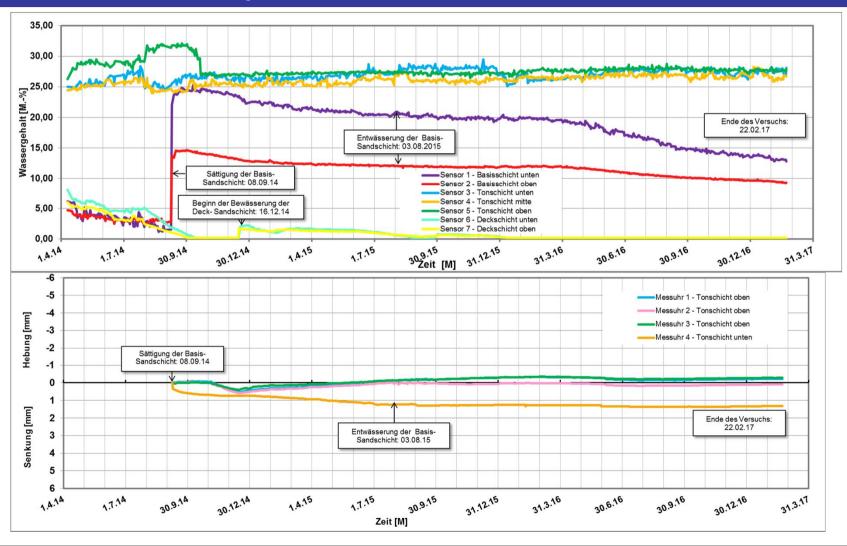
3.4 Ergebnisse Versuch 1 - Überlagerung


3.4 Ergebnisse Versuch 1 - Zusammenfassung

- Obere Tonschicht verliert Wasser
- Mittlere Tonschicht keine Wassergehaltsänderungen
- Untere Tonschicht nimmt Wasser aus Sand auf
- Senkung der unteren Tonschicht bei Sättigung des Sandes
- Hebungen an der Oberkante
- Vollständige Entwässerung des Sandes Rückgang der Hebungen
- Senkungen infolge fortgesetzten Schwindens des Tons



3.5 Ergebnisse Versuch 2 - Wassergehaltsänderungen



3.5 Ergebnisse Versuch 2 - Verformungen

3.5 Ergebnisse Versuch 2 -Überlagerung

3.5 Ergebnisse Versuch 2 - Überlagerung

- Wasserverlust in der Basis-Sandschicht gering
- Deck-Sandschicht gibt Wasser an obere Tonschicht ab, nachdem die trocken ist, nimmt der Wassergehalt der oberen Tonschicht wieder ab
- Senkung der unteren Tonschicht bei Sättigung des Sandes
- Entwässerung des Sandes führt zu keiner relevanten Zunahme der Senkungen
- Geringe Verformungen an der Oberfläche des Tons
- Keine Schwindrisse

4. Zusammenfassung

Mit den durchgeführten Modelversuchen konnte gezeigt werden:

- Ein Schwinden eines bindigen Bodens (Ton) kann bei fehlender Überdeckung eintreten.
- Deckschichten k\u00f6nnen ein Schwinden eines bindigen Bodens (Ton) verhindern .
 Die ungesch\u00fctzte Oberfl\u00e4che des Tons bei Versuch 1 zeigt deutliche Schwindrisse und deutliche Senkungen.
- Die Verformungen an der Oberfläche des Tons differieren bei beiden Versuchen erheblich. Die gemessenen Verformungen an der Unterkante des Tons liegen dagegen bei beiden Versuchen in der gleichen Größenordnung.

4. Zusammenfassung

 Eine Grundwasserabsenkung unterhalb eines bindigen Bodens (hier: Ton) führt nicht zwangsläufig zu einem Schwinden des Tones und damit zu Senkungen an der Oberfläche. An der unmittelbar auf der Basis-Sandschicht aufliegenden Unterkante der Tonschicht konnten bei beiden Versuchen Sofortsenkungen infolge Wassersättigung gemessen werden. Bis zu Entwässerung der Basis-Sandschicht nehmen die Senkungen bei beiden Versuche zu. Nach erfolgter Entwässerung der Basis-Sandschicht wurde nur noch eine geringe Senkungszunahme gemessen.

4. Zusammenfassung

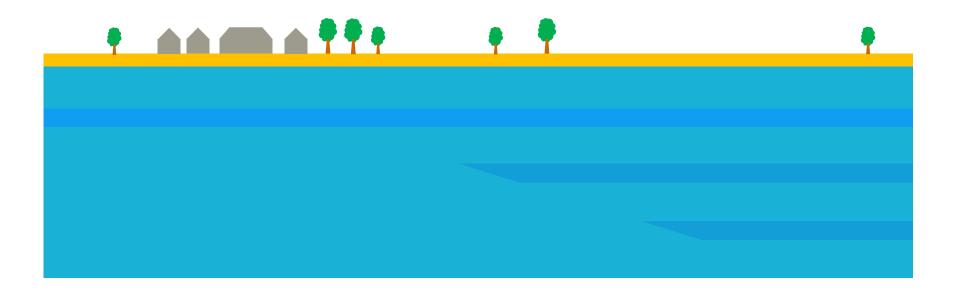
 Zusammenfassend ist festzustellen, dass sich die Oberfläche eines Tonbodens, wenn eine entsprechende Deckschicht vorhanden ist, nur in äußerst geringem Umfang verformt. Dagegen ist bei einer fehlenden Deckschicht mit größeren Verformungen zu rechnen, wobei diese nur in einem sehr geringen, baupraktisch zu vernachlässigen Umfang, auf den Einfluss der Grundwasserabsenkung zurückzuführen sind. Der überwiegende Anteil der Verformungen ist auf das Schwinden des Bodens infolge der Wasserdampfdiffusion aus der Tonschicht in die Atmosphäre mit nicht wassergesättigter Umgebungsluft begründet.

Vielen Dank für Ihr Interesse

ELE Beratende Ingenieure Susannastraße 31 45136 Essen Tel. 02 01/89 59-6 Fax. 02 01/89 59-89 9

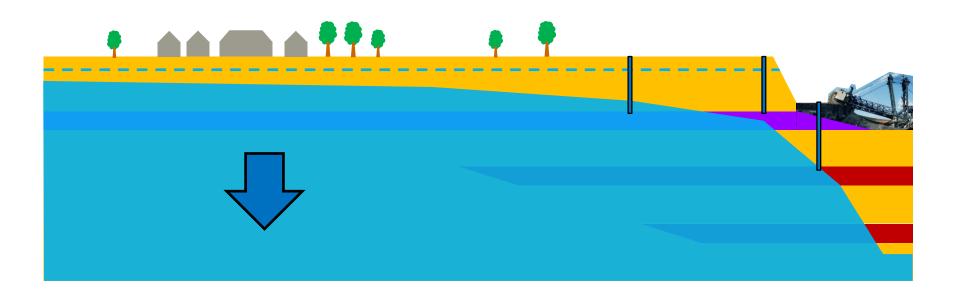
www.ele-e.de

5. BERGSCHADENSFORUM

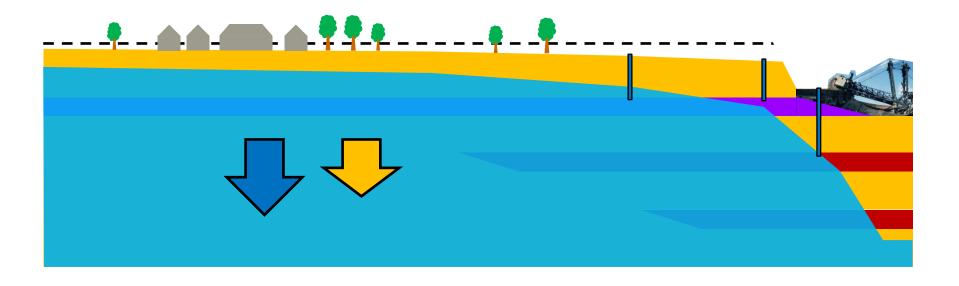

Modellierung sümpfungsbedingter Bodenbewegungen im Rheinischen Braunkohlerevier

BERGHEIM, 19. SEPTEMBER 2018

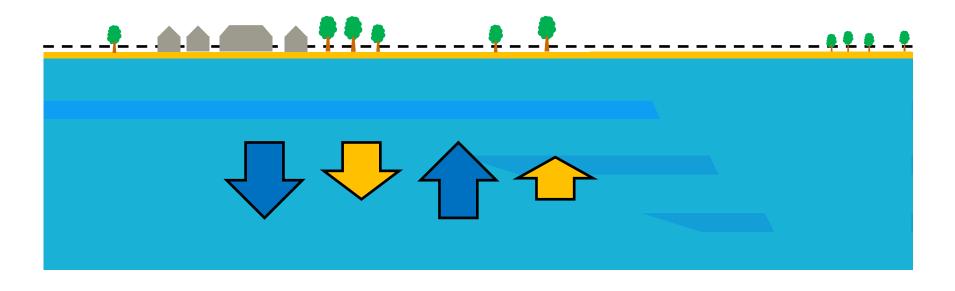
Dr.-Ing. Benjamin Aulbach



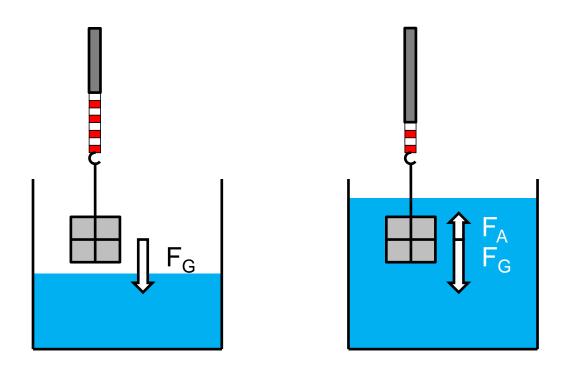
Ausgangszustand

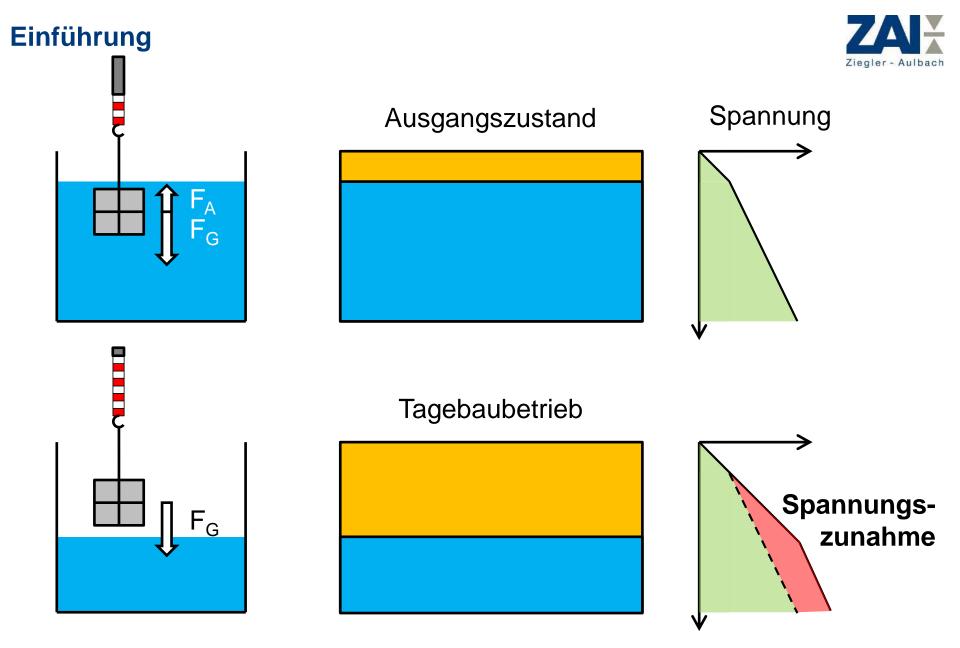

Tagebaubetrieb

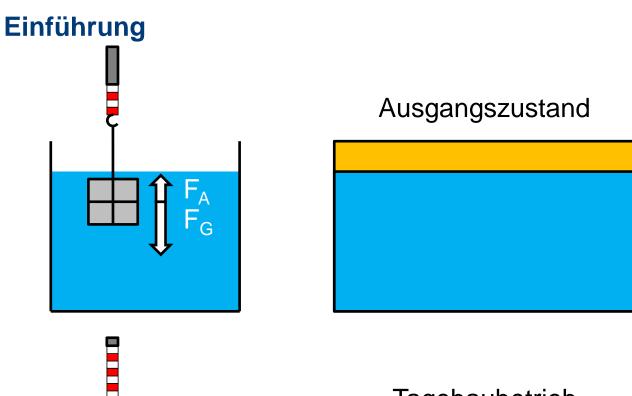
1) Sümpfung bzw. Absenkung des GW-Spiegels


Tagebaubetrieb

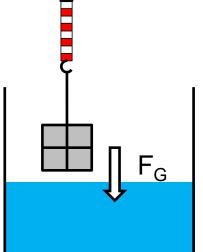
- 1) Sümpfung bzw. Absenkung des GW-Spiegels
- 2) Setzungen an der Geländeoberfläche

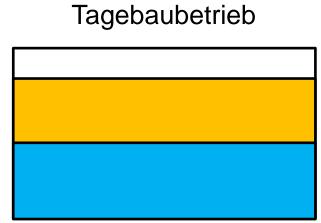

Endzustand

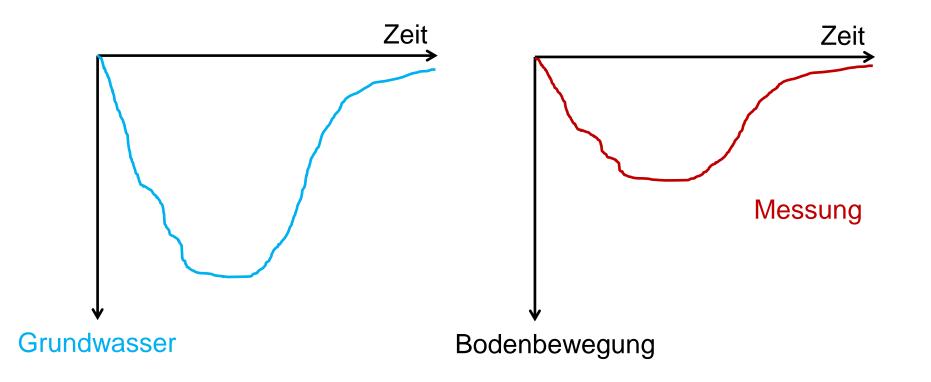

- 1) Sümpfung bzw. Absenkung des GW-Spiegels
- 2) Setzungen an der Geländeoberfläche
- 3) Grundwasserwiederanstieg &
- 4) Hebungen an der Geländeoberfläche

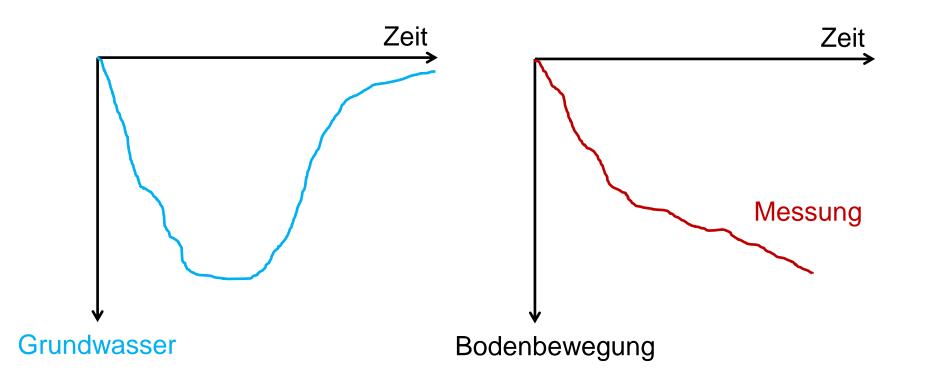


Archimedisches Prinzip



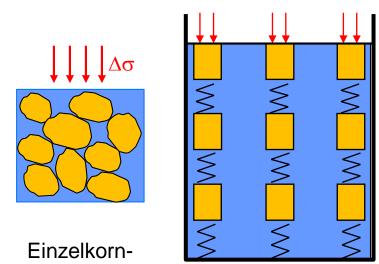

Gewicht im "Trockenen" > Gewicht unter Auftrieb




Bewegungen in den nichtbindigen Bodenschichten (Sand, Kies)

⇒ Annährend direkt proportionaler Zusammenhang

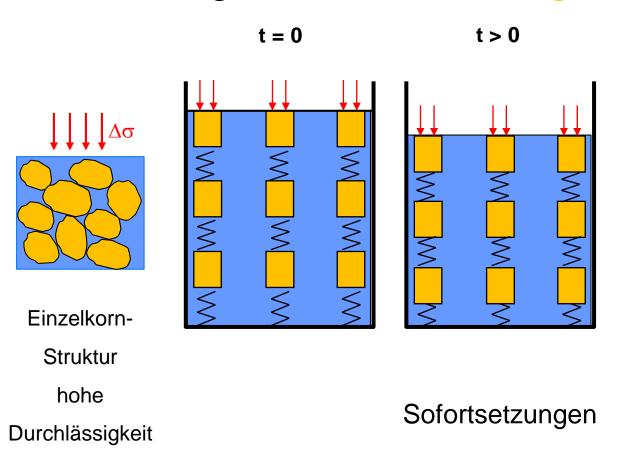
Bewegungen in den bindigen Bodenschichten (Ton, Schluff)



⇒ Nachlaufende Setzungen trotz GW-Wiederanstieg

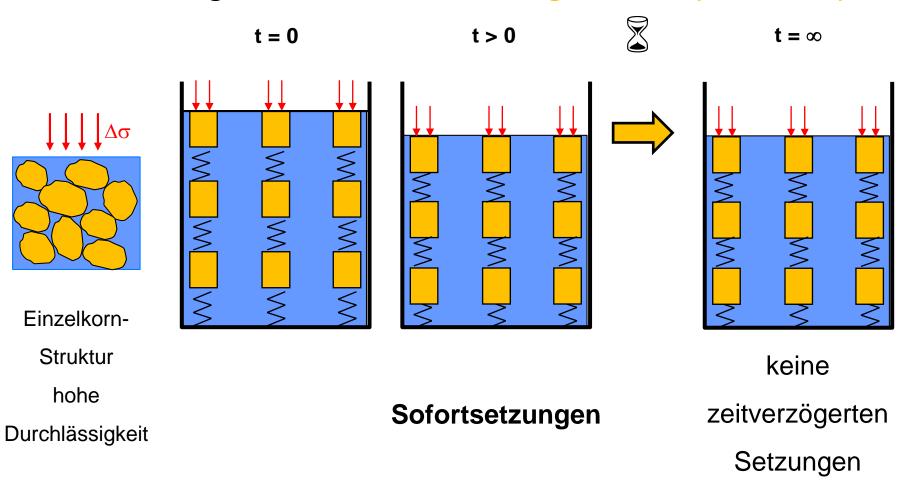
Zeit-Setzungsverhalten von nichtbindigen Böden (Sand, Kies)

_

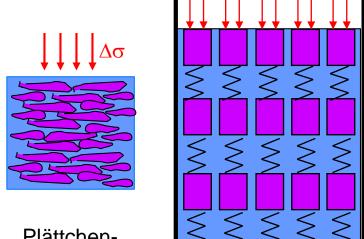

Struktur

hohe

Durchlässigkeit

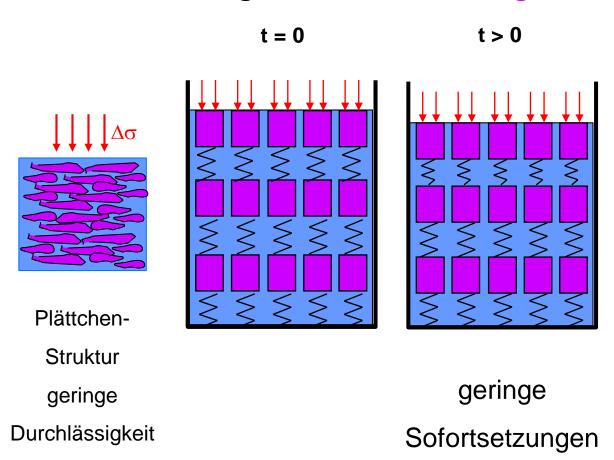


Zeit-Setzungsverhalten von nichtbindigen Böden (Sand, Kies)


Zeit-Setzungsverhalten von nichtbindigen Böden (Sand, Kies)

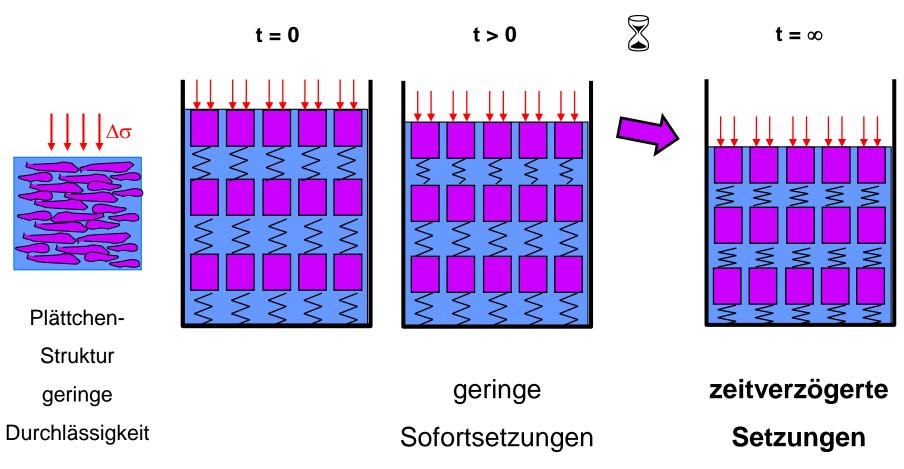
Zeit-Setzungsverhalten von bindigen Böden (Ton, Schluff)

Plättchen-

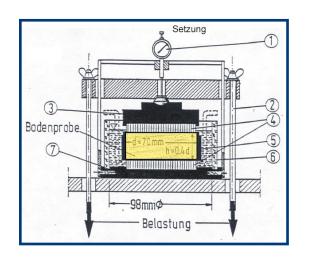

Struktur

geringe

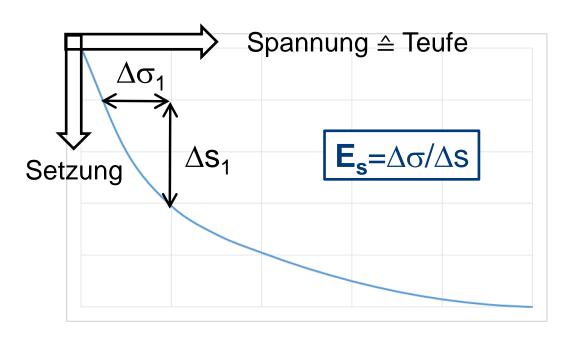
Durchlässigkeit



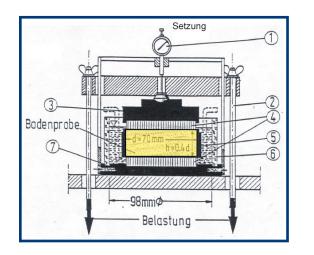
Zeit-Setzungsverhalten von bindigen Böden (Ton, Schluff)

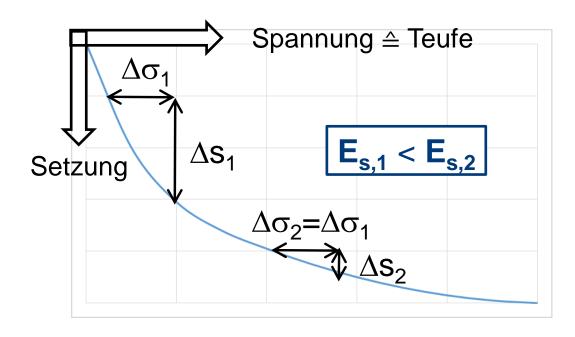


Zeit-Setzungsverhalten von bindigen Böden (Ton, Schluff)

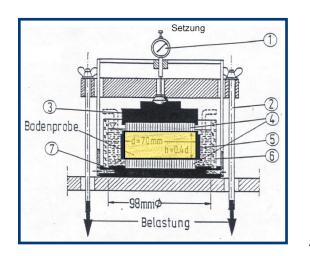


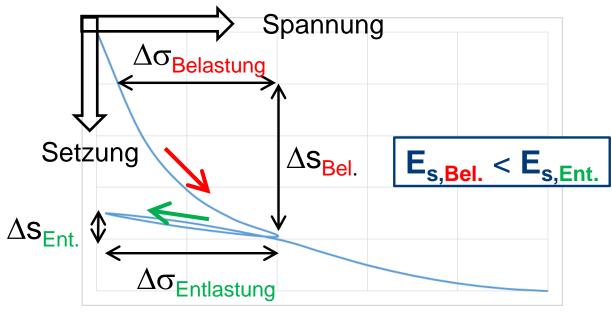
Steifigkeit nichtbindiger und bindiger Böden



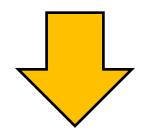

Abschnittsweise Linearisierung: E_s

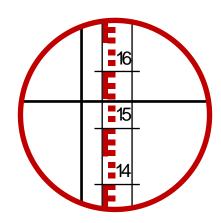
Steifigkeit nichtbindiger und bindiger Böden




- Abschnittsweise Linearisierung: E_s
- Steifigkeitszunahme mit der Tiefe

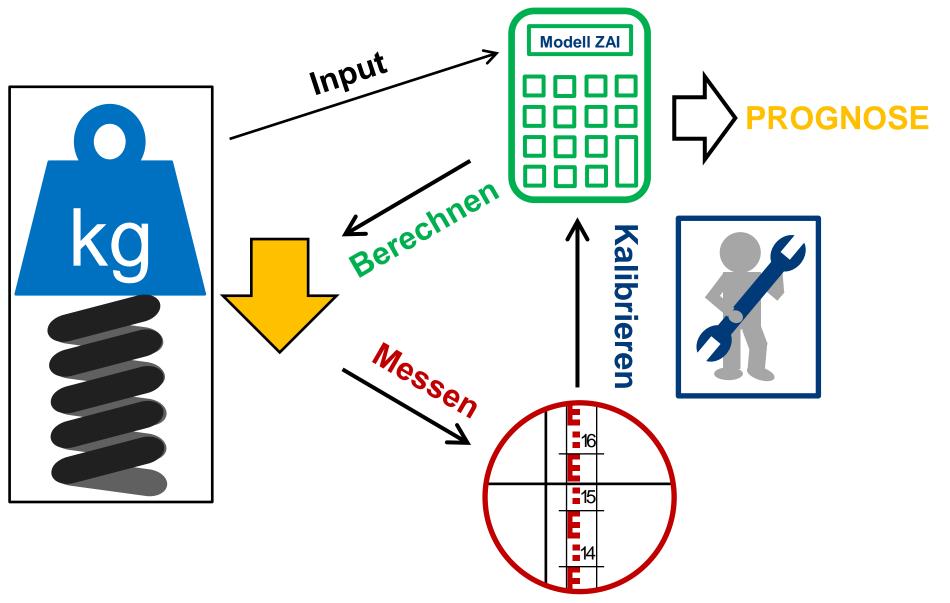
Steifigkeit nichtbindiger und bindiger Böden


- Abschnittsweise Linearisierung: E_s
- Steifigkeitszunahme mit der Tiefe
- Steiferes Verhalten bei Entlastung

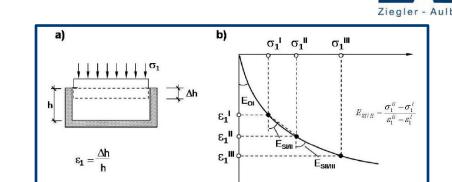


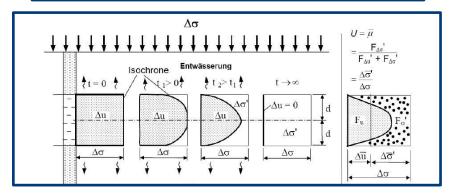
Einwirkung aus GW Widerstand des Bodens

Setzungen an der GOK


Messen

- Erfassung des Ist-Zustands
- Noch keine Prognose


im Auftrag von RWE mit den Zielen:


 Abbildung des realen Verhaltens nichtbindiger und bindiger Böden

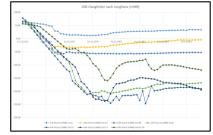
 Basierend auf bodenmechanischen Grundsätzen

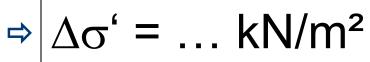
Einfach in der Handhabung

 Flexibel bei Änderung von Randbedingungen

Modellentwicklung unter folgenden Randbedingungen:

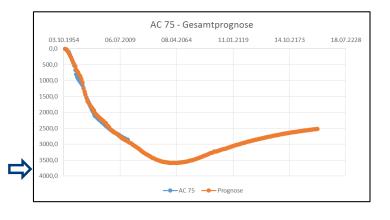
- Einbeziehung des tatsächlichen Schichtprofils und der GW-Ganglinien
- Verwendung geschätzter, aber sinnvoller Bodenparameter (Erfahrungswerte)
- Pro Punkt ein Datensatz & schichtweise prozentuale Anpassung
- Berechnung basierend auf bodenmechanischen Grundsätzen (Kompressions- und Konsolidationstheorie von Terzaghi)
- Kalibrierung entsprechend dem erwarteten bodenmechanischen Verhalten
 & anhand der Messungen

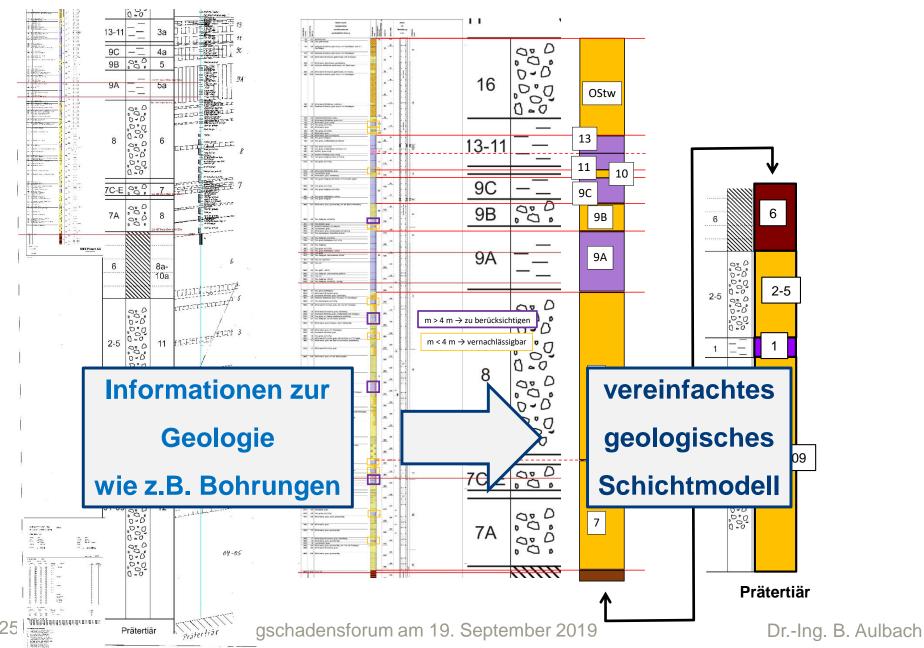

a. Schichtenmodell

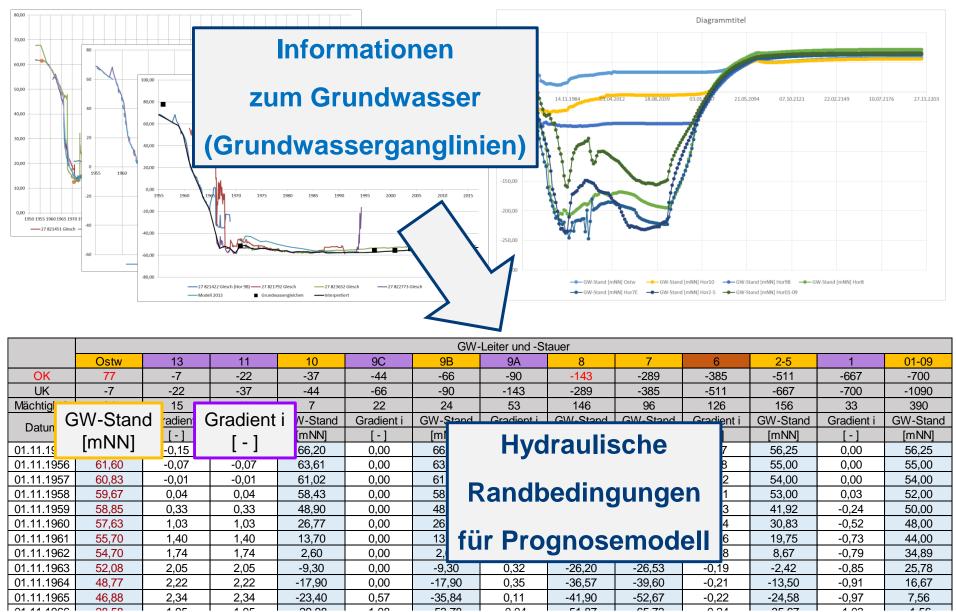


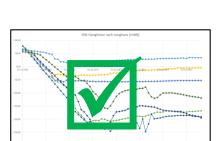
b. Aufbereitung GW-Daten

c. Auswertung Spannungen

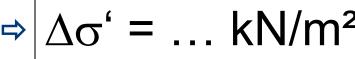

d. Entwicklung Setzungsprognose


e. Aufbereitung Messdaten

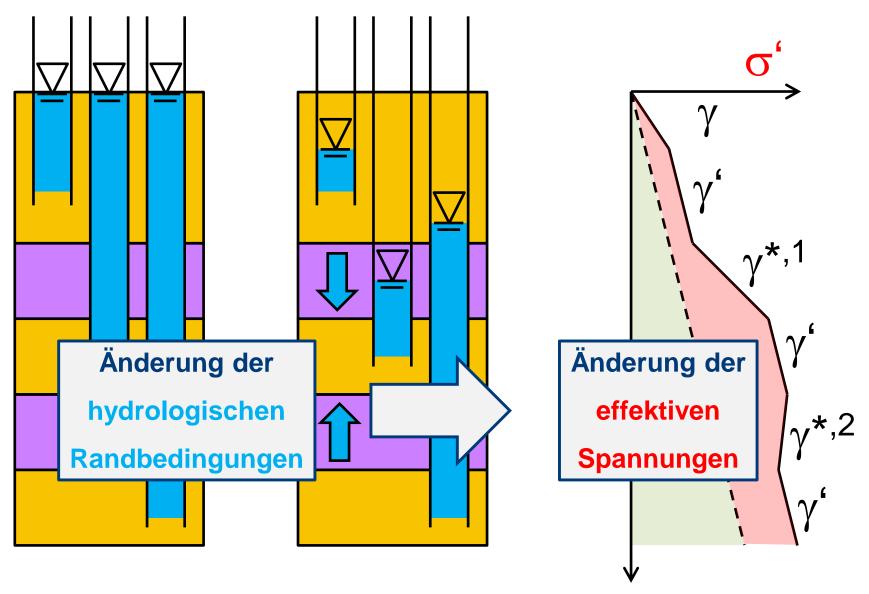

Kalibrierung der Prognose



a. Schichtenmodell

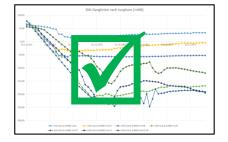


b. Aufbereitung GW-Daten

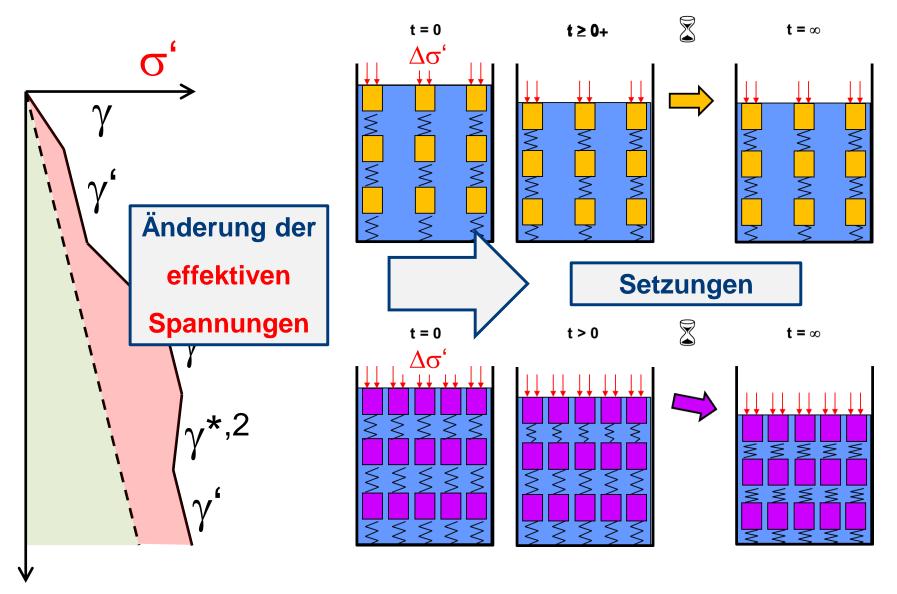


c. Auswertung Spannungen

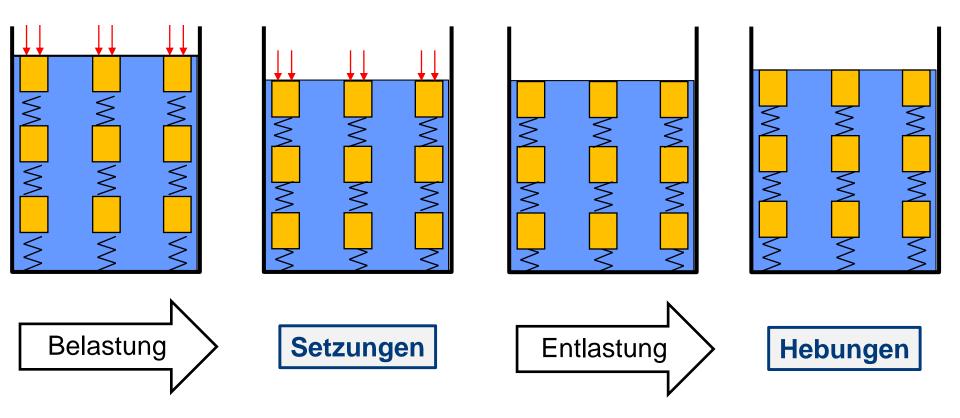
(aus geänderten hydrologischen Randbedingungen)


a. Schichtenmodell

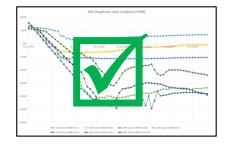
b. Aufbereitung GW-Daten



c. Auswertung Spannungen



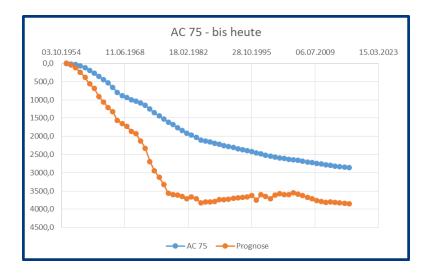
d. Entwicklung Setzungsprognose


a. Schichtenmodell

b. Aufbereitung GW-Daten

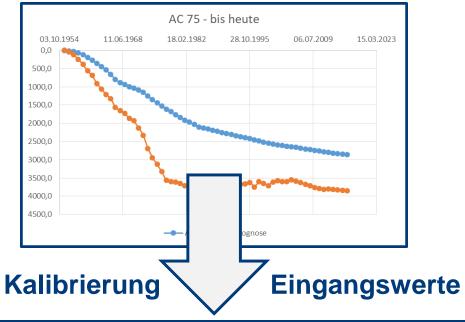
c. Auswertung Spannungen

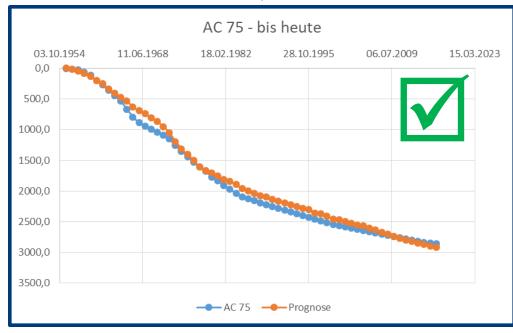
d. Entwicklung Setzungsprognose



e. Aufbereitung Messdaten

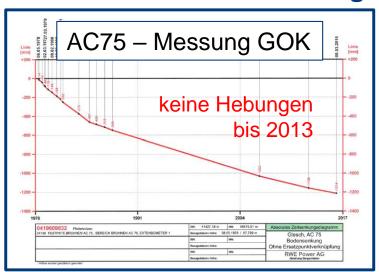
Kalibrierung der Prognose

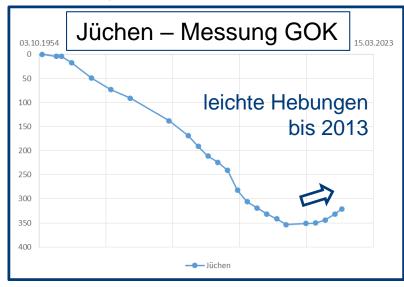


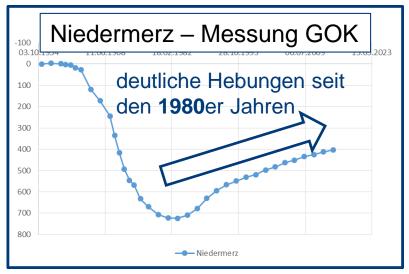

Eingangswerte					
nichtbind					
Ausgangssteifigkeit	E _s	150.000	[kN/m²]		Prozentsatz
					[%]
Schicht Ostw	E_s	150.000	[kN/m²]		100
Schicht 10	E _s	240.000	[kN/m²]		160
Schicht 9B	E_s	330.000	[kN/m²]		220
Schicht 8	E _s	900.000	[kN/m²]		600
Schicht 7	E_s	1.650.000	[kN/m²]		1100
Schicht 2-5	E _s	7.500.000	[kN/m²]		5000
Schicht 01-09	E _s	7.500.000	[kN/m²]		5000
		Hebungsfaktor			0,8

bindige				
Ausgangskons.beiw.	c_v	4,00E-10	[m²/s]	
Ausgangssteifigkeit	E_s	15.000	[kN/m²]	Prozentsatz
				[%]
Schicht 13	E_s	15.000	[kN/m²]	100
Schicht 11	E_s	18.000	[kN/m²]	120
Schicht 9C	E_s	24.000	[kN/m²]	160
Schicht 9A	E _s	37.500	[kN/m²]	250
Kohle/Schicht 6	E _s	225.000	[kN/m²]	1500
Schicht 1	E _s	750.000	[kN/m²]	5000
		Не	r 0,66	

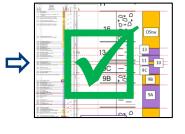
- **⇒** globale und schichtspezifische Eingangswerte
 - **⇒** direkte Rückkopplung mit Berechnung







Kalibrierung der Hebungsfaktoren


Kalibrierung der Hebungsfaktoren an den Punkten Jüchen & Niedermerz

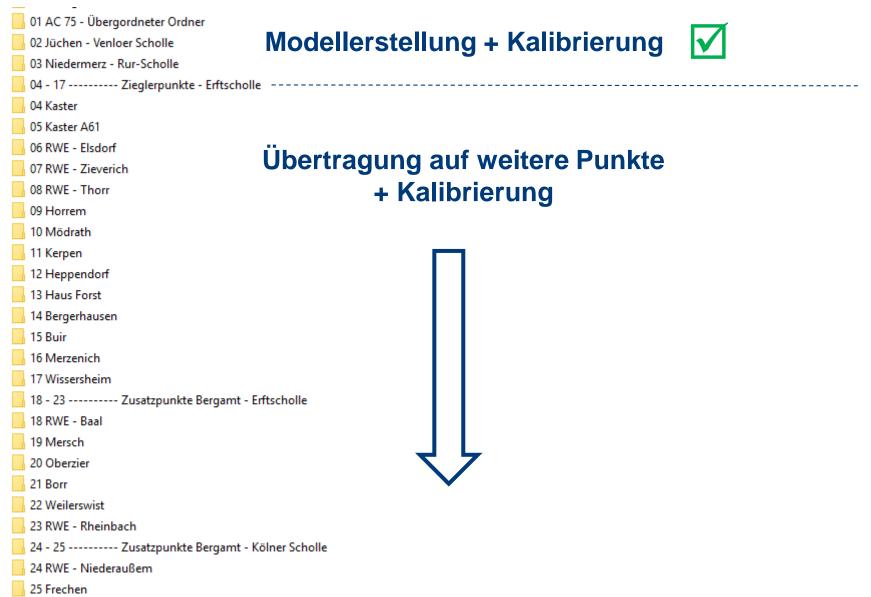
a. Schichtenmodell

b. Aufbereitung GW-Daten

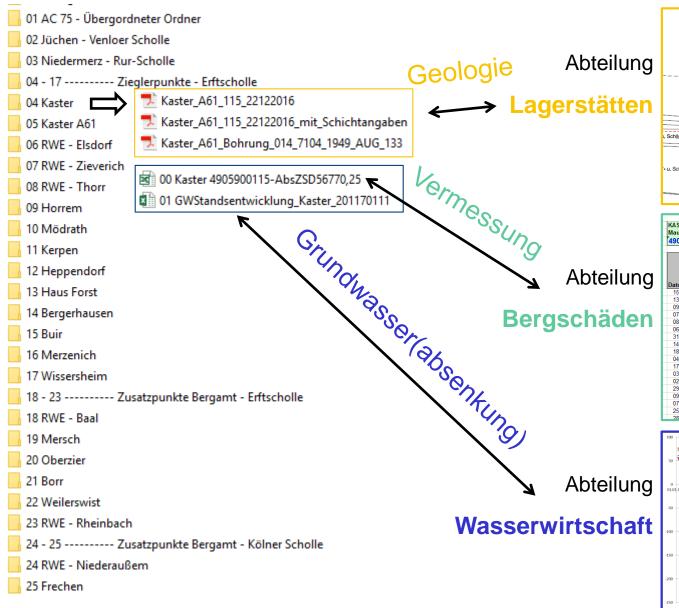
c. Auswertung Spannungen

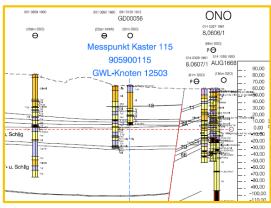
d. Entwicklung Setzungsprognose &

e. Aufbereitung Messdaten

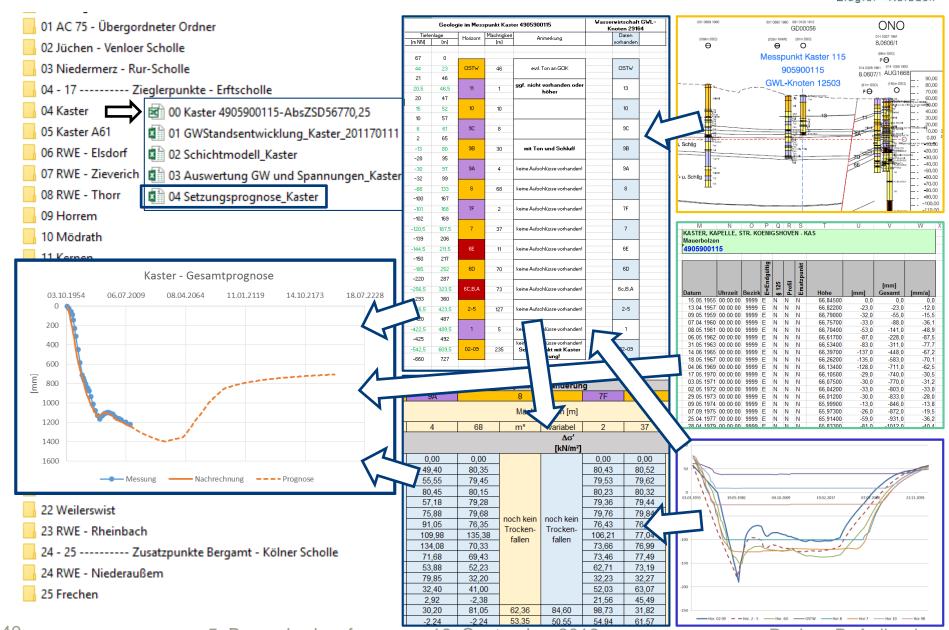


Kalibrierung der Prognose


Übertragung auf weitere Punkte

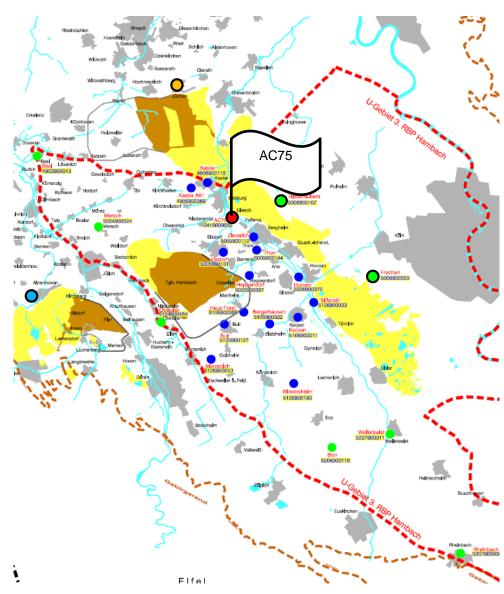


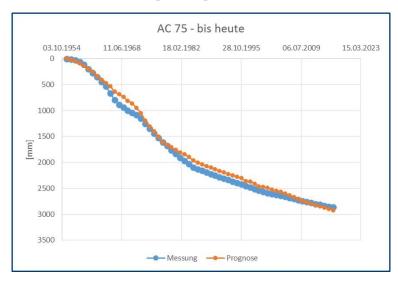

Übertragung auf weitere Punkte

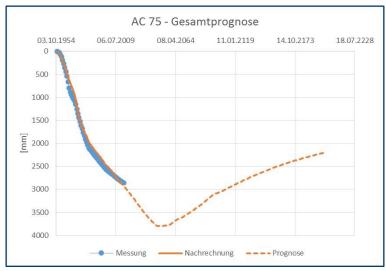

M	N	0	Р	Q	R	S	T	U	V	W	χ
KASTER, KA		TR. KO	ENI	GSH	OVE	N - P	(AS				ī
Mauerbolze	n										
49059001	15										ı
											Т
			tig			¥					ī
			ΙĒ			5					1
			E=Endgültig		l _	Ersatzpunkt					1
			Ψ	125	Profil	20			[mm]		i
Datum		Bezirk		(S)			Höhe	[mm]	Gesamt	[mm/a]	L
15.05.1955	00:00:00	9999	Е	N	N	N	66,84500	0,0	0,0	0,0	
13.04.1957	00:00:00	9999	Е	N	N	N	66,82200	-23,0	-23,0	-12,0	
09.05.1959		9999	Е	N	N	N	66,79000	-32,0	-55,0	-15,5	
07.04.1960	00:00:00	9999	Е	N	N	N	66,75700	-33,0	-88,0	-36,1	
08.05.1961	00:00:00	9999	Е	N	N	N	66,70400	-53,0	-141,0	-48,9	
06.05.1962	00:00:00	9999	Е	N	N	N	66,61700	-87,0	-228,0	-87,5	
31.05.1963	00:00:00	9999	Е	N	N	N	66,53400	-83,0	-311,0	-77,7	
14.06.1965	00:00:00	9999	Е	N	N	N	66,39700	-137,0	-448,0	-67,2	
18.05.1967	00:00:00	9999	Е	N	N	N	66,26200	-135,0	-583,0	-70,1	
04.06.1969	00:00:00	9999	Е	N	N	N	66,13400	-128,0	-711,0	-62,5	
17.05.1970	00:00:00	9999	Е	N	N	N	66,10500	-29,0	-740,0	-30,5	
03.05.1971	00:00:00	9999	Е	N	N	N	66,07500	-30,0	-770,0	-31,2	
02.05.1972	00:00:00	9999	Е	N	N	N	66,04200	-33,0	-803,0	-33,0	
29.05.1973	00:00:00	9999	Е	N	N	N	66,01200	-30,0	-833,0	-28,0	
09.05.1974	00:00:00	9999	Е	N	N	N	65,99900	-13,0	-846,0	-13,8	
07.09.1975	00:00:00	9999	Е	N	N	N	65,97300	-26,0	-872,0	-19,5	
25.04.1977	00:00:00	9999	Е	N	N	N	65,91400	-59,0	-931,0	-36,2	
28 04 1979	00-00-00	9999	F	M	M	N	65 83300	-81.0	-1012.0	-40.4	

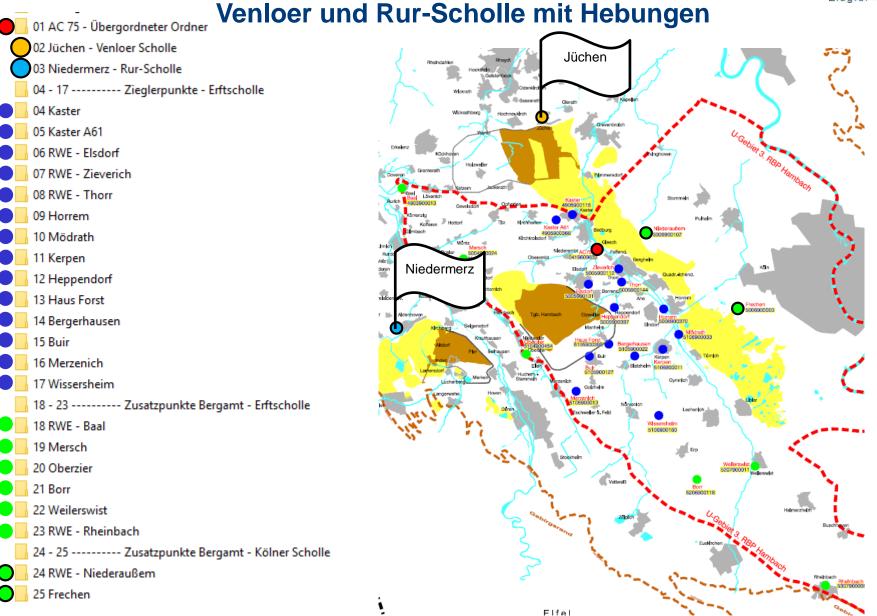
Dr.-Ing. B. Aulbach

Übertragung auf weitere Punkte

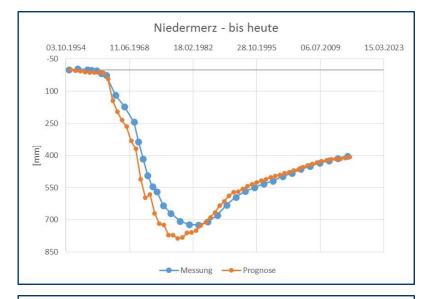


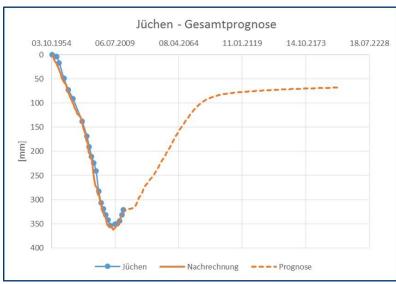

- 01 AC 75 Übergordneter Ordner
- 02 Jüchen Venloer Scholle
- O3 Niedermerz Rur-Scholle
 - 04 17 ----- Zieglerpunkte Erftscholle
- 04 Kaster
- 05 Kaster A61
- 06 RWE Elsdorf
- 07 RWE Zieverich
- 08 RWE Thorr
- 09 Horrem
- 10 Mödrath
- 11 Kerpen
- 12 Heppendorf
- 13 Haus Forst
- 14 Bergerhausen
- 15 Buir
- 16 Merzenich
- 17 Wissersheim
- 18 23 ----- Zusatzpunkte Bergamt Erftscholle
- 📙 18 RWE Baal
- 19 Mersch
- 20 Oberzier
- 21 Borr
- 22 Weilerswist
- 23 RWE Rheinbach
 - 24 25 ----- Zusatzpunkte Bergamt Kölner Scholle
- 24 RWE Niederaußem
- 25 Frechen

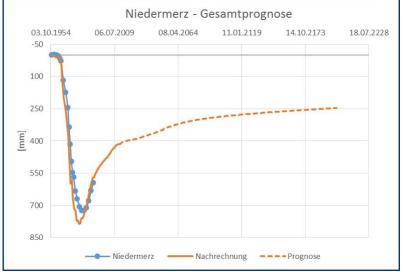

Ausgangspunkt



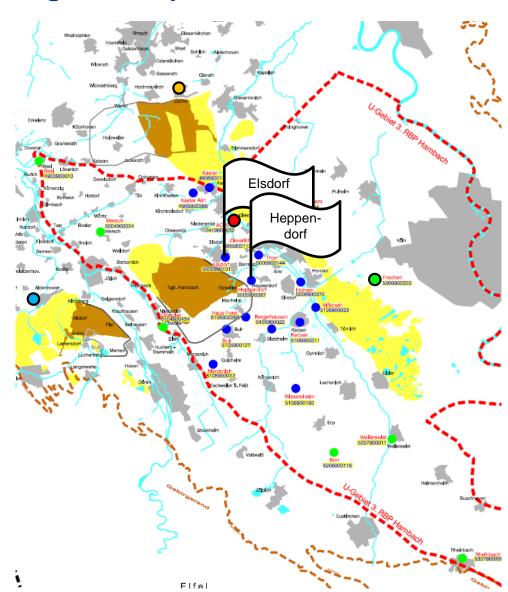
Ausgangspunkt





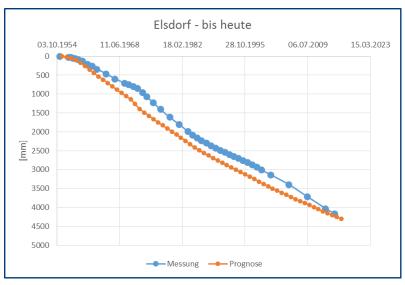


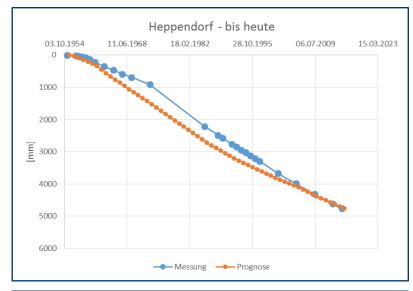
Venloer und Rur-Scholle mit Hebungen

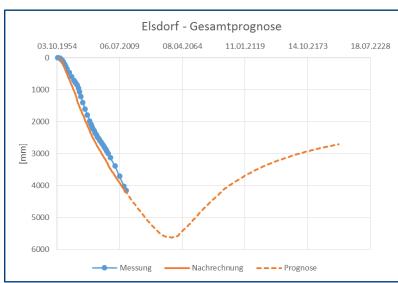


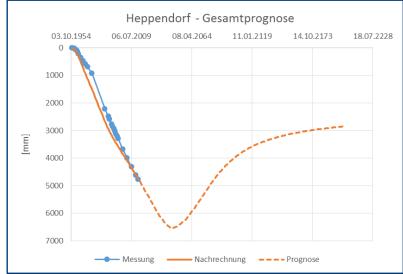
Setzungsschwerpunkt

- 01 AC 75 Übergordneter Ordner
 02 Jüchen Venloer Scholle
 03 Niedermerz Rur-Scholle
 04 17 ------ Zieglerpunkte Erftscholle
 04 Kaster
 05 Kaster A61
 06 RWE Elsdorf
 07 RWE Zieverich
- 09 Horrem

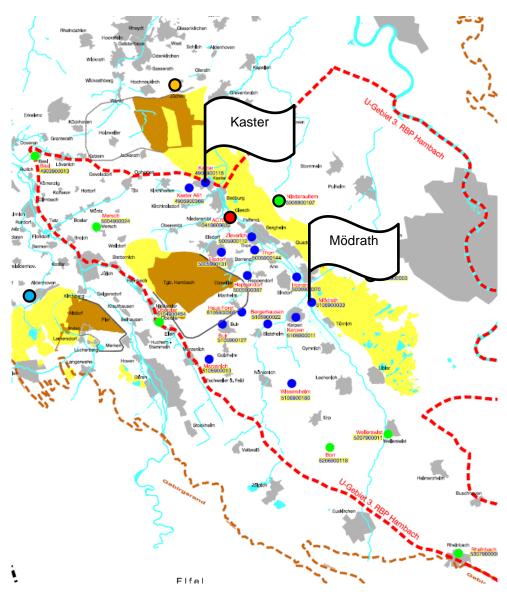

08 RWE - Thorr

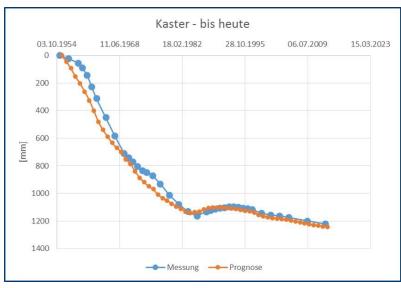

- 🛑 📙 10 Mödrath
- 11 Kerpen 12 Heppendorf
- 13 Haus Forst
- 14 Bergerhausen
- 15 Buir
- 16 Merzenich
- 17 Wissersheim
- 18 23 ----- Zusatzpunkte Bergamt Erftscholle
- 📙 18 RWE Baal
- 19 Mersch
- 20 Oberzier
- 21 Borr
- 22 Weilerswist
- 🛑 📙 23 RWE Rheinbach
- 24 25 ----- Zusatzpunkte Bergamt Kölner Scholle
- 24 RWE Niederaußem
- 25 Frechen

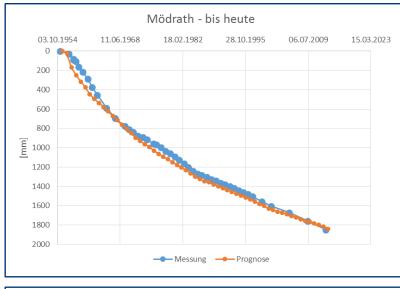


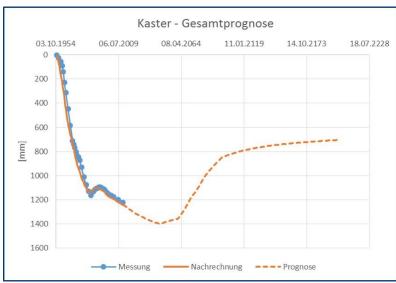


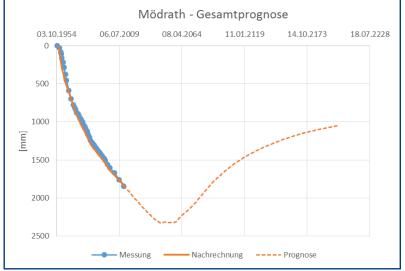
Setzungsschwerpunkt



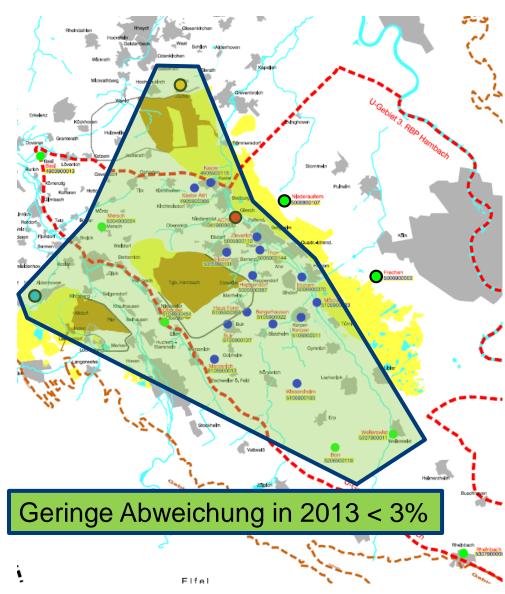

- 02 Jüchen Venloer Scholle
- 03 Niedermerz Rur-Scholle
 - 04 17 ----- Zieglerpunkte Erftscholle
 - 04 Kaster
- 05 Kaster A61
- 06 RWE Elsdorf
- □ 07 RWE Zieverich
- 08 RWE Thorr
- 09 Horrem
- 10 Mödrath
- 11 Kerpen
- 12 Heppendorf
- 13 Haus Forst
- 14 Bergerhausen
- 15 Buir
- 16 Merzenich
- 17 Wissersheim
- 18 23 ----- Zusatzpunkte Bergamt Erftscholle
- 📙 18 RWE Baal
- 19 Mersch
- 20 Oberzier
- 21 Borr
- 22 Weilerswist
- 23 RWE Rheinbach
 - 24 25 ----- Zusatzpunkte Bergamt Kölner Scholle
- 24 RWE Niederaußem
- 25 Frechen

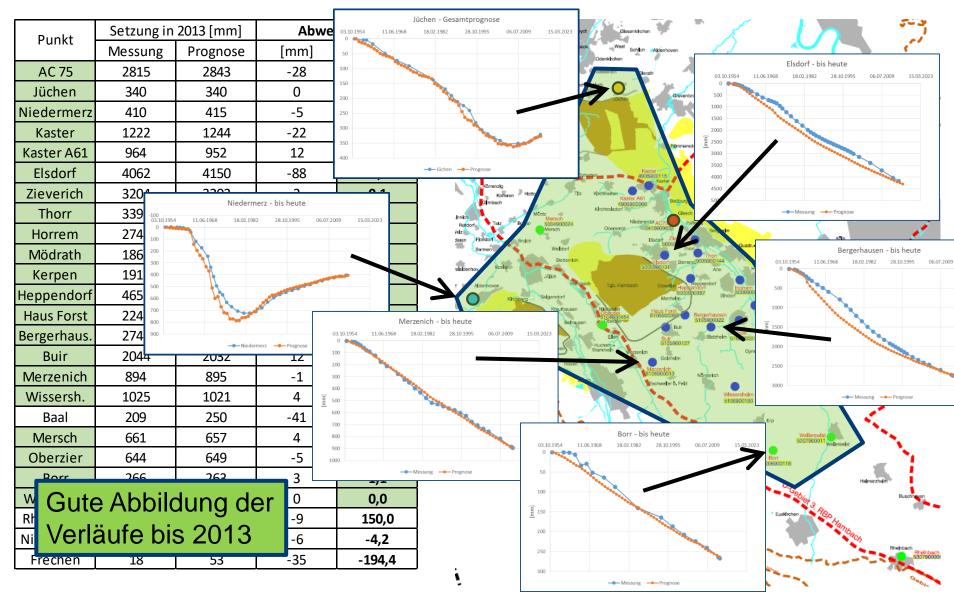

Erftniederung



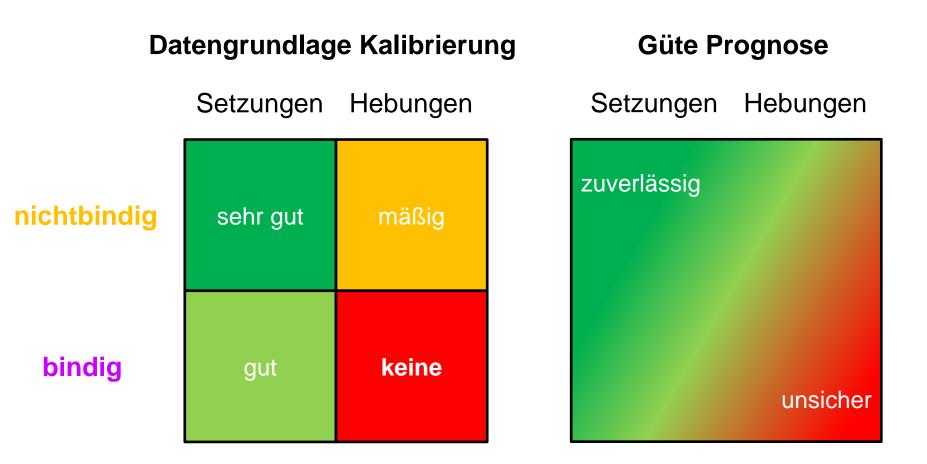


Erftniederung

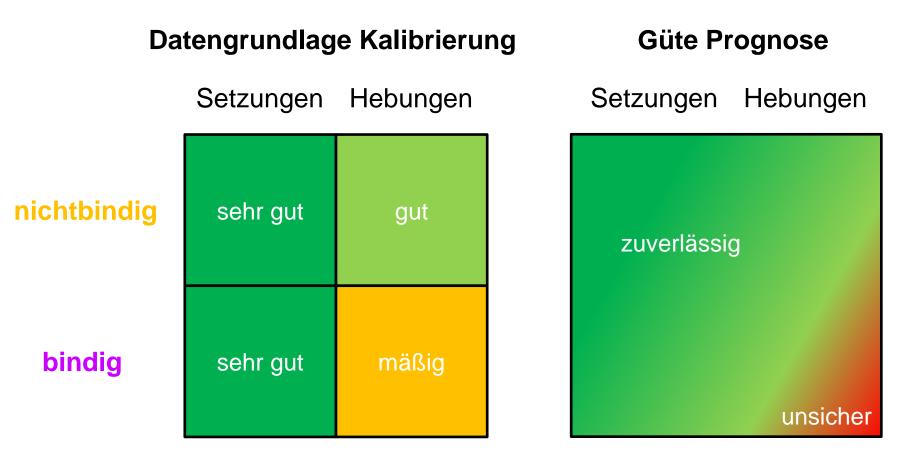

Güte der Nachrechnung – Punkte mit Abweichungen


Güte der Nachrechnung – Punkte mit guter Übereinstimmung

Punkt	Setzung in	2013 [mm]	Abweichung		
Pulikt	Messung	Prognose	[mm]	[%]	
AC 75	2815	2843	-28	-1,0	
Jüchen	340	340	0	0,0	
Niedermerz	410	415	-5	-1,2	
Kaster	1222	1244	-22	-1,8	
Kaster A61	964	952	12	1,2	
Elsdorf	4062	4150	-88	-2,2	
Zieverich	3204	3202	2	0,1	
Thorr	3397	3404	-7	-0,2	
Horrem	2747	2741	6	0,2	
Mödrath	1860	1839	21	1,1	
Kerpen	1915	1924	-9	-0,5	
Heppendorf	4657	4635	22	0,5	
Haus Forst	2240	2177	63	2,8	
Bergerhaus.	2740	2744	-4	-0,1	
Buir	2044	2032	12	0,6	
Merzenich	894	895	-1	-0,1	
Wissersh.	1025	1021	4	0,4	
Baal	209	250	-41	-19,6	
Mersch	661	657	4	0,6	
Oberzier	644	649	-5	-0,8	
Borr	266	263	3	1,1	
Weilersw.	483	483	0	0,0	
Rheinbach	-6	3	-9	150,0	
Niederauß.	144	150	-6	-4,2	
Frechen	18	53	-35	-194,4	

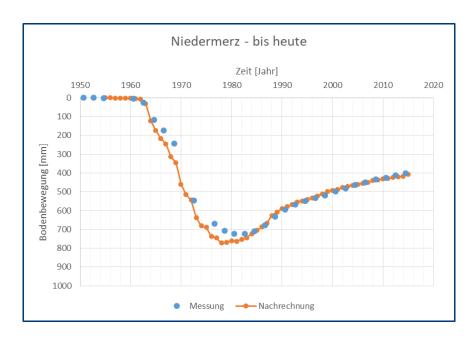


Güte der Nachrechnung – Punkte mit guter Übereinstimmung


aktuell ...

... noch gewisse Unsicherheiten mangels ausreichender Datengrundlage

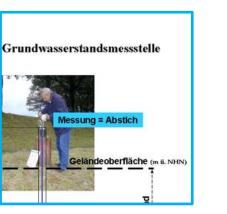
... bei fortlaufender Kalibrierung ...

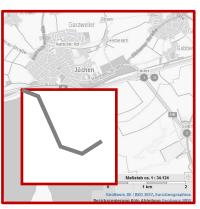


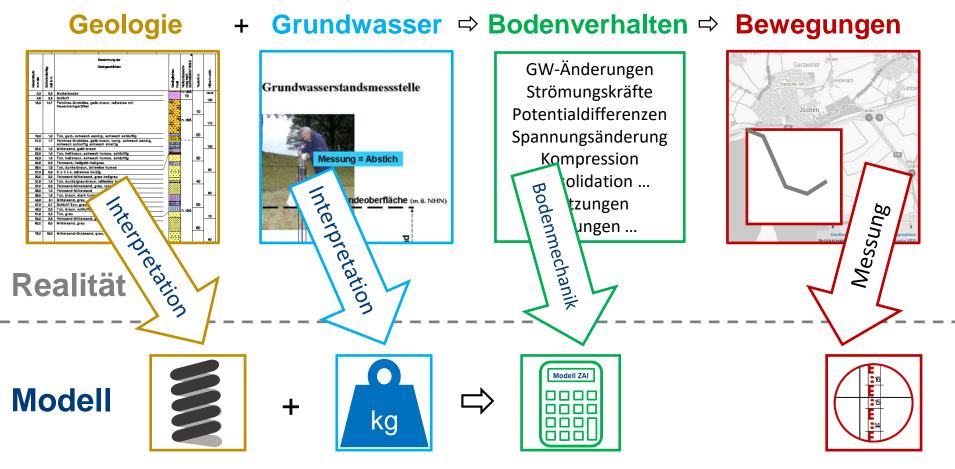
... stetige Verbesserung durch bessere Datengrundlage

Anwendung des Modells im Auftrag des LANUV...

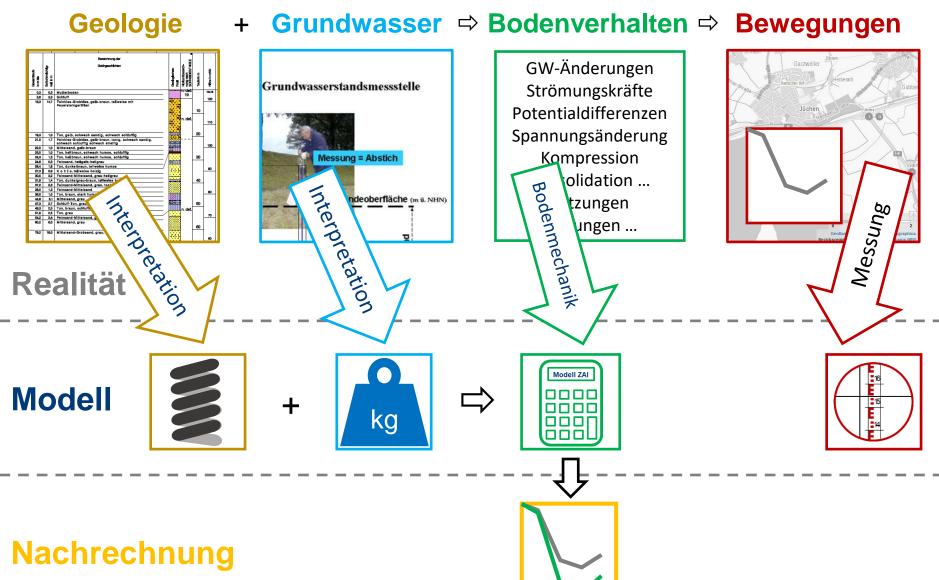
- Sensitivitätsanalyse für Niedermerz
- 12 weitere Punkte (in Bearbeitung)
- Geologie & GW-Daten vom LANUV


... ebenfalls sehr gute Abbildung der Bodenbewegung!

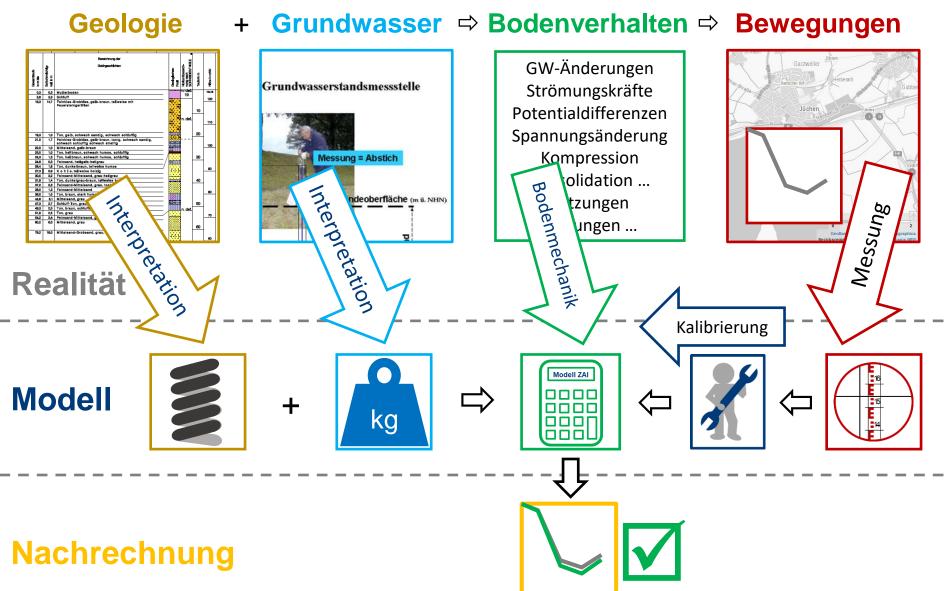

Geologie

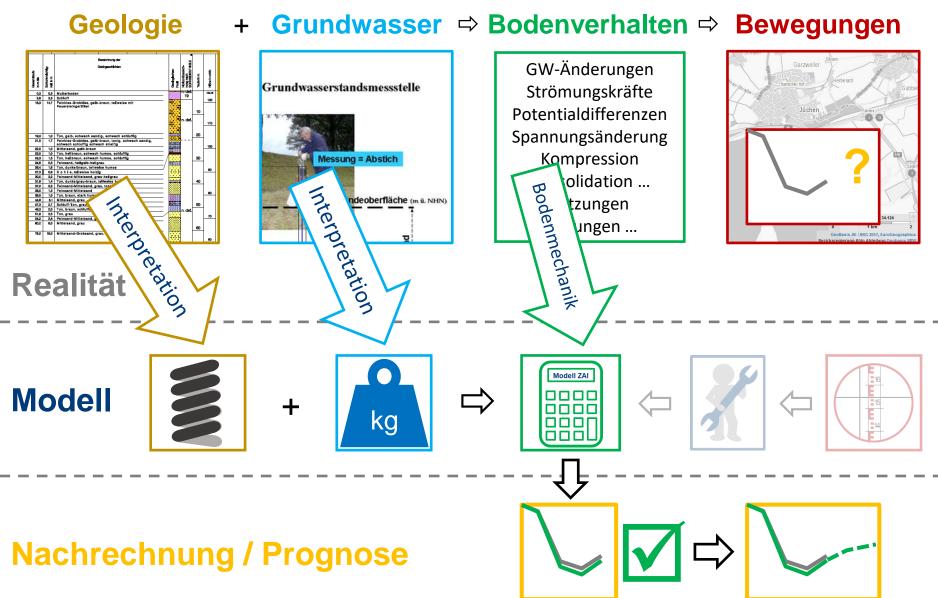


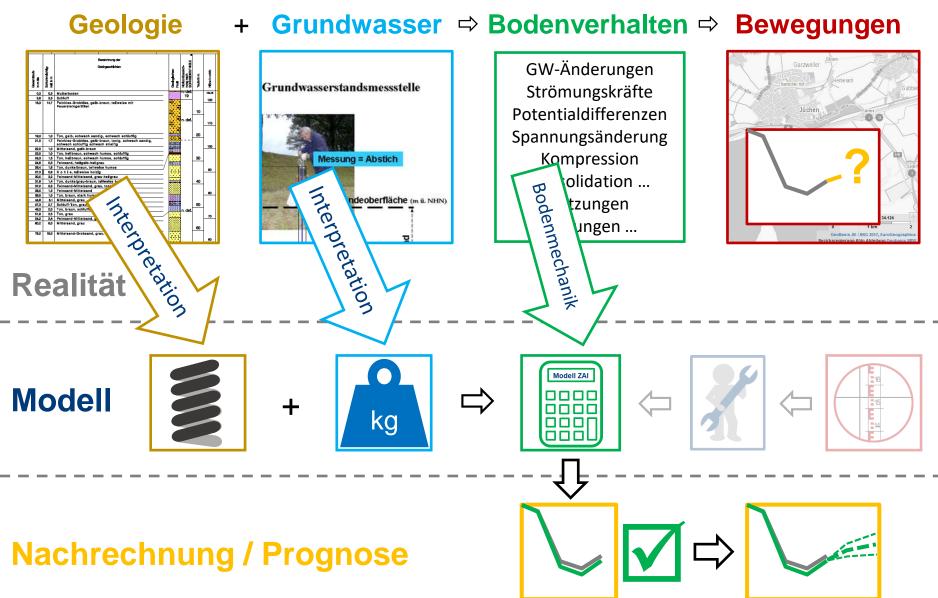
GW-Änderungen Strömungskräfte Potentialdifferenzen Spannungsänderung Kompression Konsolidation ... Setzungen Hebungen ...

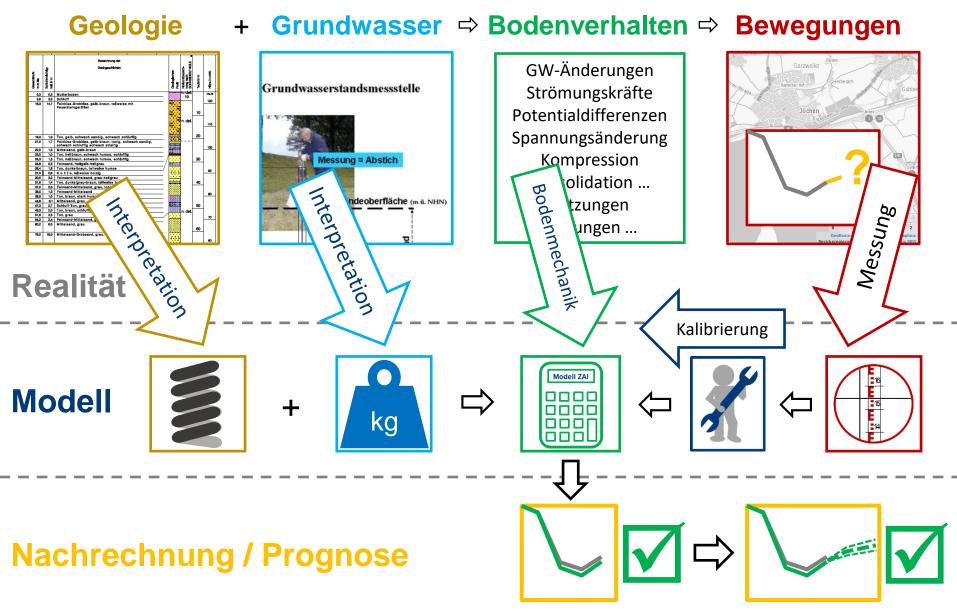


Realität









Das Modell...

- ...basiert auf Bodenmechanischen Grundsätzen und berücksichtigt entscheidende Faktoren,
- bildet das bis dato gemessene Verhalten sehr gut ab,
- ermöglicht die Prognose zukünftiger Bodenbewegungen,
- kann relativ einfach an geänderte Bedingungen (Betrieb, GW-Haltung) angepasst werden,
- kann durch fortlaufende Messungen und Nachkalibrierung stetig verbessert werden.

